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Xiv

ABSTRACT

As the amount of uncertainty in online power system operations gmnamsmethodologies
need to be devised in order to timely monitor and control the power gritiisl work, novel
techniques for online voltage stability margin monitoring and control baee developed with
a focus on reactive power reserves.

The maintenance of adequate reactive power reserves (RRRelitisal step in avoiding a
voltage collapse. A thorough investigation of the relationship betweteraiit definitions of
reactive power reserves and how they are related to voltage stabilginrfasM) is performed.

Multi-linear regression models are used to relate RPRs and.\S&Meral operating
conditions and a significantly large number of different network topedogncluding NERC
category B, C and D outages are considered as well. A classifidool is then developed in
order to identify which regression model needs to be used basegstam sconditions and
network topology. The approach is tested in the IEEE 30 bus test systkim a reduced case of
the eastern power system interconnection of the United StatesltsRkeave shown that the
approach can monitor voltage stability margin in real timedasethe amount of system wide
reactive power reserves.

In case degenerative system conditions are identified, controhaeed to be put in place
to increase the amount of RPRs and system VSM. A novel control mistippoposed here in
order to identify the location and amount of control necessary tveedRPRs, VSM and to
remove existing voltage violations. The approach is based on the ichardifi of a critical set of

generators that, if exhausted, will directly contribute to a voltagepssl
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XV

Potential control actions are investigated in order to recover ttridgeal reactive power
reserves, namely: active power re-dispatch, capacitor smgtcactive and reactive power load
shedding. The effectiveness of each control variables on RRRkugated using reactive power
reserve sensitivities, a concept introduced in this work. Once seesgtivities are calculated,
the problem of recovering RPRs and VSM is formulated as convex tjaadpdimization
problem with a reduced dimension.

Results on the IEEE 30 bus test system and the IEEE 118 busyséstn are used to

illustrate the efficacy of the approach.
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CHAPTER 1. OVERVIEW OF THE PROBLEM AND RESEARCH

CONTRIBUTIONS

1.1 Introduction

The current lack of investment of transmission expansion associdtedhes aging of the
current network infrastructure creates significant challerigethe stable operation of the power
grid in the United States. Growing environmental concerns, combuitadthe lack of clear
economical incentives for private investors have delayed and sldvee@xpansion of the
transmission network.

On the other hand, load continues to grow in the system despifghylsecal constraints
imposed by the transmission grid. If investments are not propedguted on time, the US
power grid will slowly be pushed to its operational limits. In sachuncertain and critical
scenario, voltage instability becomes a serious threat and deatge-blackouts are prone to
occur.

In the past 15 years, the North American power grid has undergone two mejimerpawer
related instability events. A description of the blackout which wedum the western electric
coordinating council (WECC) on august 10, 1996 can be found in Taylor, Q1%98).
According to the author, the lack of proper reactive power support andfosltage control
have caused a classic case of voltage collapse.

Another example of a recent large-scale event caused in yampooper reactive power
support is the North American blackout in August 2003, NERC (2004). Alatktavestigation
of the event pointed out that not only a single factor caused thepwedal blackout, but rather a

combination of failures. The report has concluded that inappropriatéveegower support
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played a major role in the events. An analysis performedrmesson, P. and Geckil, 1. (2003)
has estimated the economical impact associated with the blaokoeiirt the range of 4.5 to 8.5
billion dollars. These costs include lost income to workers and investatea costs to
government agencies (e.g., due to overtime and emergency sstey the affected utilities,
and lost or spoiled commodities, not accounting for the direct impact on people’s lives.

In order to improve reactive power management and prevent voltagpseoaents as the
ones presented above, the North American Electric Reliakibiyporation (NERC) has issued
several reliability standards related to real time RPR toong and voltage control VAR-001-1
(2006), VAR-001-2 (2010), TOP-006-1 (2006) and TOP-006-2 (2008). Real time RPR
monitoring has also been identified as one of the recommended actiorder to reduce the
likelihood of future system blackouts as described in NERC recommm@msl§2004). Although
the aforementioned standards and remedial actions may enhancertpavadreness regarding
the amount of reactive power reserve available, it may not praudatitative information
regarding how far the system is from a voltage collapse.

However, the Federal Energy Regulatory Commission (FERC) hasaned the efficacy of
the aforementioned standards by saying that system operato gainsituational awareness
by simply viewing massive amounts of raw data. According to GERD06), “..while the
requirements identify the data to be gathered, they fail to desdrébéobls necessary to turn
that data into critical reliability parametersTherefore, there is a need to develop alternative
tools that can process the massive amount of data gatheredargopervisory control and data
acquisition (SCADA) system. These tools have the objective to fgeittiations where voltage

instability is a real threat.
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In addition to that, the development and integration of new and improved operati
techniques and methods is one of the goals of the smart grid weit{&®G1). In short, the SGI
has the objective to modernize and maintain a reliable, efficrmhtsacure operation of the
United States power grid, according to Ereergy independence and Security Act of 2E03A
(2007), USDOE (2007).

Based on the aforementioned needs and objectives, a methodology to tramesfiotime
monitored RPRs and other SCADA measurements into VSM informadiatevised in this
research. A weighted summation of system wide RPRs is usestiteate how much VSM is
still available. The approach uses multi-linear regression mollikklRNIs) to relate RPRs and
VSM for a large set of contingencies and different load increesearios. Statistical analysis of
the MLRMs is further performed in order to verify basic statistical pra@gsefor these models.

In case a few MLRMs are necessary, a decision tool neetie teveloped in order to
facilitate operator’'s choice while selecting the appropriatdRM. Such tool can use other raw
system measurements, such as line flow and bus voltage magnigsiesal multiclass
classification methods have been studied and analyzed. It is imptotanéntion that the
MLRM-IDtool will not only facilitate the operators to choose tight MLRM t, but it will also
reduce the likelihood of human error involved in the selection process.

Several meta-learner techniques have been tested in order tdyidbatimost suitable
approach for this problem. A detailed comparison of the complexityaandracy of each
technique to the problem at hand is performed to determine theapysipriate technique. The
results have shown that for certain cases, a single decismrcare successfully classify all
MLRMs accurately. More complex classification techniques likestacked hierarchical

classification method are used when the MLRM identification is harder.
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The final online VSM tool, which is composed of the MLRM-IDtool and KMHeRMs, is
then tested on the IEEE 30 bus and on a reduced case of the easteonmeiction with
promising results.

Additionally, a control methodology based on RPR sensitivities toralomictions is
proposed to improve RPRs and VSM, while maintaining system voltagésn normal
operational limits. These linear RPR sensitivities with resfpecontrol actions are calculated in
order to identify the most effective controls. Active power ger@rashunt capacitors/reactors
and load shedding are investigated as potential candidates for cénteol. critical RPRs are
exhausted at the point of collapse and only the control actionsatbhamost effective in
reestablishing those RPRs are included in the control search.

A convex guadratic optimization problem is formulated to identifyrtheimal amount of
control necessary to recover the critical RPRs and VSM tegeeHied offline limits. Tests on
the control methodology on the IEEE30 and IEEE 118 help to illustratefticacy of the

methodology.

1.2 Research contributions

1.2.1 A novel online VSM monitoring tool

e The online VSM monitoring approach can handle all different NBEp€s (B, C and
D) of contingencies, from N-1 to N-k contingencies. The number ofngenricies is
not limited and can be as large as required by system operators.

e A reduced number of MLRMs is necessary to cover a wide vaoktyperating

conditions and network topologies.
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Confidence intervals help the models account for uncertainty in load/ibgha
situation commonly experienced in practical applications due to aispre of load
forecasting tools.

The methodology converts raw data (RPRs) into meaningful informatipmut
proximity to voltage collapse. Margin estimation is provided in MWhsd system
operators can easily interpret and take appropriate actions, ythatetving VSM
estimation to be done in the online operating environment.

The methodology can be applied to large, real-sized networks as deateths the

results section, enabling operators to perform wide area VSM monitoring.

1.2.2 Sensitivity based real-time control to enhance RPRs and VSM

A fast and efficient method to identify control actions for RRRd VSM
enhancement in real time.

The methodology introduced the concept of RPR sensitivity to cordtiohataking
into account the capability curve of synchronous machines. Thasgigges can
help operators identify the most effective control actions for each individual RPR.
By identifying the most effective control actions, it is potestb significantly reduce
the dimensionality of the optimization problem. Such dimensionality teauds
useful for real time operations since it reduces the numbssrdfol variables in the
optimization problem, thereby allowing the approach to be implemiéntan online
fashion. Moreover, the use of linear sensitivities enables thehsdar optimal

control to be formulated as a convex quadratic optimization problem.
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e The solution of the optimization problem determines the minimal anwfucgntrol
to be applied to the system in order to recover safe levels Bis Rind VSM.
Simulation results on the IEEE 30 bus and IEEE 118 bus test syatemssed to

demonstrate the efficacy of the method.
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CHAPTER 2. LITERATURE REVIEW

2.1 Online voltage stability margin monitoring techniques

Although there is large number of publications in the literature rilates the impacts of
RPR management and improvements of VSM, very little reseaschd®en done in the area of
online VSM monitoring through RPRs.

It is well known that the depletion of reactive power reserve&R@REirectly impact voltage
stability margin, Taylor, C. (1994), Van Cutsen, T. and Vournas, C. (1&88)Ajjarapu, V.
(2006). NERC has issued several standards related to online monitofRBRs available in
control areas across the United States power grid. The argumehbysdERC is that by
monitoring RPRs in real time, operator’'s awareness regardingnptgxo voltage collapse may
increase.

However, the Federal Energy regulatory adverts in FERC (2006)sysé¢m operators
cannot gain situational awareness by simply viewing massiwei@nof real time data. It also
indicates that new data applications are needed in order to coawedata into meaningful
information to operators. Therefore, there is a clear need forttuatisan process the massive
amount of data that is currently being streamed into SCADA/EWSems into sensitive
information to system operators. Aiming to fulfill the aforenmamed needs, this research has
developed a technique to convert online monitored RPRs into real tirive éé8mation to
system operators.

Previous studies have shown that proper RPR management dirgotbvés system wide
VSM. In Dong, F. et al. (2005), an optimal strategy attempts tamize the amount of VSM

while maintaining adequate voltages and thermal limits in tinsrimession lines. The problem is
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formulated as a security constrained optimal power flow with Bénhd@ecomposition
accounting for different topologies of the grid. Results have demabtthaat an increase in
overall RPR leads to an increase in VSM.

El-Keib, A. A. and Ma, X. (1995) have attempted to relate inputs fro&CFCsystem to the
amount of voltage stability margin. The authors used an Artifid@alral Network (ANN) for a
specific loading condition and network topology, demonstrating thatraec estimations of
VSM could be obtained. The downside of the approach is that differentingezanditions and
network topologies can emerge, causing the number of needed ANNSs to grow out of proportion.

Jeyasurya, B. (2000) has attempted to use an ANN to estimateeveti#doglity margin in real
time. The training data is composed of generator terminal volt@gieamd reactive power output
of the generators, reactive power reserve of the generators avelraattive load demands.
Principal component analysis is used here to reduce the dimensiohatie/problem before the
ANN design. Although good accuracy has been obtained, the author ontptaitesimulations
on three different network topologies. A different ANN is used on esativork topology,
thereby indicating that the practical implementation of theaambr may become cumbersome in
case hundreds of topologies are considered.

Jimenez, C.A. and Castro, C. A. (2005) and have also used artifiaral metworks (ANN)
to estimate VSM directly. System variables such as voltaggnitudes, active/reactive power
generation, real and reactive system load and active and regatieg in transmission lines are
used as inputs to the ANN. The approach is tested on small systemssatisfactory
performance.

Bao, L. et al. (2003) were the first to explore the RPRs as potentialtordicd VSM. In this

initial work, the authors mention that a linear relationship betwd@RsRand VSM seems to
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exist. An online voltage stability monitoring system using the conokémquivalent reactive
power reserve is proposed. The methodology is tested in a redlsystem for a particular
operating condition and a selected list of N-1 contingencies. Rdésave shown that reactive
reserves can be valuable indicators of voltage stability margin.

However, there is a need to account for uncertainty in loading condamhshanges in
system network topology during online VSM estimation. System loadimglitions can vary
significantly during the day or seasons (spring, summer, fallvanter). The effect of load
increase direction must be investigated and taken into account foeatlyliaffects the amount
of VSM. The methodologies proposed up to date have not demonstrated ttoemaece when
different load increase conditions are considered. Moreover, the effether NERC category
B (N-1), C (N-2) and D (N-k) contingencies must be accouftedince contingencies more

severe than N-1 can occur at any time in the system.

2.2 Multilinear regression models and machine learning technigue

Multilinear regression models (MLRM) are among one of the madélw used and well
established statistical tools for inference making and predjdfi@mbaum, D. et al. (1998) and
Kutner, M. et al. (2004). Successful applications can be found in figdging from
semiconductor manufacturing to economics Lin, Z. C. and Wu, W. J. (1999)tasehB&und,
A. H. (2006). Similar to other statistical models, it has thétalbdo model uncertainty by adding
confidence intervals to the point estimates. This feature can @peaif value in order to handle
load growth and network topology uncertainties.

Therefore, the design of a robust online VSM estimation toollisasthallenging topic. In

this study, we have overcome some of the current limitationsmresthe previously described
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techniques. The proposed approach incorporates uncertainties related itactease direction
(LID) and network topological changes and a wide range of operating condittocsnsidered.

A comprehensive voltage stability assessment (VSA) is perfotoneapture the behavior of
RPRs, VSM and other SCADA data. Several LIDs and network topolaggessed to account
for system network configuration changes and uncertainty in load gr@atte a large amount
of data is gathered from simulations, MLRMs are trained n&flusing the database and are
further used to estimate VSM in online operations.

As more than one MLRM may be necessary, a decision tool ignegesin order to identify
the most appropriate MLRM for given system conditions. This ideatibn tool is named
multi-linear regression model identification tool (MLRM-IDtool).e\&ral meta learning
techniques have been investigated to form the multiclass clas$ifie investigated algorithms
are decision trees (DTs) Quinlan, J. R. (1993) and Breiman, L. é&%4); artificial neural
networks (ANNs) Bishop, C. M., (1995); k-nearest neighbors (KNN), Ahaet al. (1991) and
Aha, D. (1992); and support vector machines (SVM) Cortes, C. and Vapn(ik995), Burges,
C. J. (1998).

Although four different techniques have been investigated, ANN amd BAéed classifiers
have shown to require longer training times compared to DTs and K@iNshe other hand,
ANNs have shown to produce good results with high classification aear Overall, the
accuracy of the four investigated techniques varies signifcdapending on how they are used
to perform multiclass classification. Therefore, preference will bengio the techniques that are
simpler to implement, easier to visualize and obviously can nraitita specified performance

requirements.
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2.3 Multiclass classification techniques

Multiclass classification problems are usually developed m general ways: bgxtending
binary classification algorithms or ldecomposinghe problem into several binary classification
problems, Duda, R. O. et §2000), Aly, M. (2005).

The advantage of ANNs, KNNs and DTs is that they can be used hneltgnsion and
decomposition approaches. This characteristic gives them gredilitle compared to other
techniques as they can be fit into different methods for perfonamicancement. On the other
hand, SVMs can only be used for multiclass classification if thdtictass problem is
decomposed into several binary problems as it is an inherently binary etassifi

Among the most popular decomposition techniques, there approaches have dterbnstr
accurate performance. These approaches areoiiee versus onemethod, Hastie, T. and
Tibshirani, R. (1998) and Friedman, J. (1996& one versus alinethod Rifkin, R. and Klautau.
A. (2004) and théierarchicalclassificationmethod Kumar et al. (2002) and Chen et al. (2004).

Figure 2.1 shows how these three different techniques can be differentiated.

Multiclass
classification

Extensible Decomposition
algorithms method

Hierarchical

One versus onr

One versus allf=

Figure 2.1. Different multiclass classification methods
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The major objective is to develop a classifier that makes uaryodf the above mentioned
methods and achieves very high classification accuracy. It pertant to mention that the
exhaustive investigation of multiple meta learning techniques tdtialass classification is not

the objective of this work.

2.4 Online RPR and VSM control techniques

In the second part of this research, a method is devised intorddentify control actions
that can enhance RPRs and VSM in real time. Several studiesémomstrated that the amount
of VSM directly increases with an increase of RPRs andrdiifepreventive/corrective control
approaches have been proposed.

Vaahedi, E. et al. (2001) have proposed a planning VAR method consideringlgoss
contingencies in a planning horizon. Margin requirements are inctegdoma the approach
which is formulated as a nonlinear optimization problem and solved usempeBs
decomposition method.

In Dong, F. et al. (2003), a dual objective optimization approach tonmmxithe amount of
RPRs and reduce system losses is proposed. Simulation resultshbawethat the amount of
voltage stability margin increased with an increase of irgagower reserves. The approach
used a nonlinear optimization framework based on optimal power flow asTtleBs
decomposition to determine the best current operating condition.

The concept of reactive reserve based contingency constrained optowalr flow
(RCCOPF) is introduced in Song, H. et al. (2003). An optimal power fflamwework is used to
identify the minimal amount of RPRs necessary in order to impthgeamount of voltage

stability margin for various contingencies and operating conditianplementation of the
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approach shows that the amount of voltage stability margin isowregrand that the found
system state (power flow solution) corresponds to the minimum effective RPR

The aforementioned approaches are based on variations of nonlinear optweil
formulation, thus being adequate for day ahead planning and/or offline adijgpisc They can
also be used to determine adequate levels of RPRs based on thef stifidyent scenarios and
contingencies. However, if uncertainties involved with real timeraimns reduce the RPRs
beyond safe limits, control actions should be quickly identified andogeglto avoid further
voltage profile degeneration and, in the worst case, a voltage collapse.

In this study, a methodology is proposed to address the problem afmealditage stability
through the enhancement of critical RPRs and system VSM. Ttids expected to be used
in emergency situations when low amounts of RPRs, VSM or voltage violations aneedbse

Sensitivities of control actions of critical RPRs will be usedetermine the optimal amount
and location of control. The control search is then formulated as aatjgamimvex optimization
problem, which can be solved quickly.

Now that the review of the state of the art methods in theisuga@sented, the relationship

between RPRs and VSM will be studied next.

www.manaraa.com



14

CHAPTER 3. ON THE RELATIONSHIP BETWEEN REACTIVE
POWER RESERVES AND VOLTAGE STABILITY

MARGIN

3.1 Introduction

It is well known that voltage instability events usually takecplin conditions where there is
a shortage of reactive power supply and consequent loss of voltagel.chdohetheless, there
are not many references studying the relationship between RPRs and V&Miterature.

Voltage collapse usually occurs in heavily loaded systems that dwmwetsatisfactory local
reactive reserves and consequently cannot maintain a securesvoitdide across the system.
Heavily loaded systems not only have high active and reactive power demandplthawa high
reactive power losses in the transmission lines. This high deofarehctive power requires
generating units to push reactive power production to their lirm#sce causing them to
eventually hit their capability curve limit and lose the ability to sarierminal voltage.

Several voltage stability related incidents have occurred in $hard worldwide in the past
decades. Improper reactive power management combined with ladkaifasial awareness of
the local and regional grid played an important role in recent 2003 Morterica power
blackout, as described in NERC (2004).

While the effect of RPRs on system stability is widelgrexwledged, few studies have been
conducted to investigate how RPR levels could be used to indicatetumiaof VSM. In Dong
et al. (2005), a methodology for maximizing reactive power resan@gical areas is proposed.
A nonlinear optimal power flow strategy is formulated considesriagous system scenarios.

Bender's cut decomposition method is used to model the differergnsysbnditions. The
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problem is later solved using the interior point method. Results lnwensthat by increasing
system wide reactive power reserves, the amount of voltage stabilitynnatsgiincreases.

Bao, L. at al (2003) initially proposed a voltage stability margiol that uses RPRs to
estimate VSM. The authors used the concept of equivalent reactive pseeve and margin
estimations are obtained by modeling these equivalent reactive pesesve. Static (capacitor
banks) and dynamic (synchronous generators) RPRs are selectada@tarazation procedure
defines how much each machine contributes to the equivalent RPR.

Attempting to further investigate and better understand thaéaredhip between RPRs and
VSM, a detailed investigation of different types of RPR and Bys#SM is performed in
Leonardi, B. and Ajjarapu, V. (2008). The major objective of this invatsbig is to determine
the nature of the relationship between RPR and VSM.

Four different definitions of RPRs have been tested and pracsigatis related to practical
implementation have been explored. A thorough investigation of how aiffRfR definitions
are related to VSM is reported in this chapter. Results deratedtthat although some RPR
definitions have a better relationship with VSM, aspects retatpdactical implementation may
prevent their use for online RPR and VSM monitoring.

Initially, a description of the aspects involved in a voltage collapsdent and the various
voltage stability classifications are introduced. A summarhefresults obtained from the study

is given in detail along this section.
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3.2 Aspects of voltage stability

3.2.1 Classification of voltage instability

Researchers in the area of voltage stability know that adegeattive power support has
vital importance on voltage regulation and control. A power systerbeaonsidered relatively
safe (as far as voltage collapse is concerned) if a reasgrabeamount of RPRs are available
in order to maintain voltages during emergency conditions in teeemy These emergency
conditions may arise from several situations, with the most conbamg equipment failure,
system faults and high load conditions.

Voltage instability phenomenon can be broadly divided into two fosimsrt term and long
term voltage instabilityKundur, P. et al. (2004). In this research, we have addressed psoblem
related to long term voltage instability events for both small argkldisturbances. Figure 3.1
shows the CIGRE/IEEE international classification standard of valtage instability

phenomena.

Voltage stability

Short term voltage Long term voltage
stabilty stability

Small disturbance
(changes in operating
condition)

Large disturbance
(contingencies)

Figure 3.1. Identification of the type of phenomena studied (shaded boxes)
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Long term voltage instability problems can be further divided imto $ub areas named
structural failuresor progressive load increasetructural failuresaddress outages of any
equipment in the power grid. System outages can be planned or unplanngétyi.depend on
maintenance schedule and weather conditions, among other factors. Ahaoistase list of
system equipment would include generators, transmission lines,otrars$, capacitor/reactor
banks and static VAR compensators (SVCs).

If the outages are cause due to maintenance, it is called a&glantage. On the other hand,
if the outage is caused by system faults or equipment failuragdtegular operations,, it is
called an unplanned outage. Removal of system equipment may prestait eecas of the
system from receiving an adequate amount of reactive power suppat, eam in turn lower
the voltage profile across the area. Similarly, outage of @galpment used to provide voltage
support (e.g., generators, capacitor/reactor banks, SVCs, etc) fudhlel exacerbate voltage
problems.

Progressive load increads usually used to see until what point the system can siiséain
demand. It is by increasing system load so that generatiitg respond to it until the system
cannot find a converged solution and a voltage collapse is observeds Thig/pical stress
method in order to analyze long term voltage stability.

In order to determine the effects caused by equipment outagetemsvoltages and VSM,
we first need to introduce and define those concepts. Definition of VSM and the mexhtnas

may lead the system into voltage instability are described next.

3.3 Definition of voltage stability margin
In order to explain how long term voltage instability occurs,fwgt need to introduce the

concept of voltage stability margin (VSM). Voltage stabilitgngin is defined as the difference

www.manaraa.com



18

between the maximum possible load in the system and the cwaenfl the system (in MW) as
shown in Figure 3.2. This graph is widely known as the PV curve, wheepresents the total
amount of active power increased in the respective system &raar@ V represents the voltage

at one load bus in the system.

A System current
loading condition

1 4 —_— __ Basecase

/f! Steady State
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1T Voltage Stability Margin for C1 ._I 1
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P maxcz P maxci P max o

Active power (MW)

Figure 3.2. Effect of different contingencies on system voltage statoiéitgin

Figure 3.2 shows how different contingencies affect the amountSdil \éf a system. A
typical example of voltage collapse due to topology change is giget. Assume the system is
currently loaded aPmax.c1 MW (on the x axis) and the current system topology is the lzsse c
(represented by the green curve). In case contingency 2 occueswitiebe no intersection

between the loading lev@ax.c1 and the curve representing contingency 2. This means that a
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post contingency stable equilibrium point would not be found and the systerd face a
voltage collapse due to unstable operation.

Another way of long term voltage instability can occur when tmewnt of load grows
progressively until the system reaches a saddle node bifurcation Aj@rdpu, V. (1992),
Ajjarapu, V. (2006). For instance, let us assume that the actuahldlad system is represented
by Pacwal in Figure 3.2. Consider also that the PV curve representing trenttwpology is the
base case. A voltage collapse happens when the system loasl igrench a way that the
operating point moves along the curve until it reaches the systeiimum loading condition
point (nose point). At that point, the voltage at the bus (y axis) sa®ieep drop even for small

load increments (x axis), characterizing thus a voltage collapse.

3.4 Voltage instability mechanisms

Although different time frames and disturbance severity are involmedt events have a
quite similar mechanismhe inability of the power system to meet the demand for reactive
power This inability can be caused by two main reasons as discussed in Schlufetét9B8).

Loss of voltage control: “The loss of voltage controloltage instability is caused by
exhaustion of reactive supply with resultant loss of voltage controh guarticular set of
generators, synchronous condensers, or SVCs. The loss of voltage nohtnly cuts off the
reactive supply to a sub region requiring reactive power, but alseases reactive network
losses that prevent adequate reactive supply from reaching sabsreg need of reactive
power.”

Clogging voltage instability: “Clogging voltage instabilitysually occurs due to highX
series reactive losses, tap changers reaching tap limitghalle shunt capacitors reaching

susceptance limits, and shunt capacitive reactive withdrawal ddecteasing voltage. These

www.manaraa.com



20

network reactive losses that result from the above possibitiiascompletely choke off the
reactive flow to a sub region needing reactive supply without amgustion of reactive reserves
and loss of voltage control on generators, synchronous condensers, or SVCs.”

Since both phenomena may occur in the system, any methodology devissdirfe VSM
estimation must be able to capture system behavior for both desmwding to Kundur, P.
(1994), two main aspects must be analyzed during a voltage stability study.

Proximity to voltage instability: “The calculation of how far a system is from a voltage
measures how many MW away from a collapse the system isdi§tence to instability is
usually measured in MW and represents the total system loadevdowother system
measurements such as total active power flow across centairiaces, or reactive power
reserves in the studied area can also be used as indicators.”

Characteristics of voltage instability: “This analysis has the objective to investigate the
mechanisms that contribute to a voltage collapse and cause itstalihe system. Steady state
simulations of a large number of scenarios are usually helpfdetermine critical system
components and areas. This analysis is also capable of deterwmatiage-weak areas, i.e.,
areas in the system where voltage support is poor and are thus pammiidates to voltage
instability.”

Consistent and extensive work has already been done in studigngharacteristics of
voltage stability, especially in the field of voltage controlagrédentification as presented in
Zhong, J et al. (2004) and Morison, K. et al. (2008). Therefore, thiarobswill focus on the
development of a real-time technique to estimate the distanoe dr voltage collapse. The
method will make use of system wide RPRs in order to estith&eamount of VSM. A

definition and investigation of four different types of RPRs is given next.
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3.5 Reactive power reserve definitions
Before analyzing the relationship between RPRs and VSMnegsssary to determine how
RPRs are defined. In order to address this question, a study hasobeeisted in considering
different definitions of RPRs, Leonardi, B. and Ajjarapu, V. (2008). dlsjective of the study is
to investigate how different definitions of RPRs are related $&\and also if any of these
definitions can be used for online VSM monitoring. The four investigalefthitions are

introduced in Figure 3.3 and Figure 3.4 below.

<
E Field Heating
g Limit
Machine Rated
- Operational Point
B QRCC Armature
= . Heating
a a . Limit
RCM o~ C}Q
~~ PQ
S Rvt] RCL B Turbine
a - \ \ Limit

=
Prated p(MW)

Figure 3.3. Capability curve of synchronous generator

The figures represent the capability curve of a synchronousajenemd the PV curve
frequently used in voltage stability studies, respectively. Usiaget two figures, four definitions

of RPR can be identified.

www.manaraa.com



22

QRCC represents the RPR definition with respect to the capabilit;eleRCM represents

the RPR definition with respect to a constant maximum valuesémtive power dispatchRVL

represents the RPR definition with respect to a minimum voleag and QRCL represents the

RPR definition with respect to the collapse point.

The pointsa, b andc in Figure 3.3 and Figure 3.4 are the same and represent the current
operating condition, minimum voltage violation limit,(W Figure 3.4) and the voltage at the
point of collapse (Vin Figure 3.4). The voltage violation limit (Mrepresents the point where
bus voltage magnitudes reach the minimum voltage limit. Althoughvétii'e may vary among

transmission operators, typical values lie in the range of 0.90 — 0.95 p.u.

V (p.u)

Pinitial Prmax1 Pmax ¢ P (MW)

Figure 3.4. PV diagram
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QRCC = QCap Curve Q&
Qrem = Qeonst Max @
Qri=Q-Q

Qrel = Q- &

(3.1)

QCap_ Curve QConst Max: Qa, QJ and Q are the reactive power limits due to the

capability curve, reactive power limit at a constant maximuomonly used in power flow
simulations), current reactive power dispatched by the machamtive power dispatched at the
point of minimum acceptable voltage and the reactive power digmhtahthe point of voltage

collapse, respectively.

3.6 Relationship between RPRs and VSM

As mentioned earlier, the relationship between RPRs and VSMnatasery clear until
recent studies have investigated it. Preliminary resultscatel that a linear relationship
between reactive power reserves and system voltage stakaliggmms found to occur as shown
in Bao, L. (2003).

After studying the interaction of both variables in more detailas been observed that the
relationship between RPRs and VSM can be linear or quadragiendeg on several system
characteristics, such as: proximity between generator and &ddrcsize of generating units
and presence of nearby generators, Leonardi, B. and Ajjarap, V.)(20@8der to investigate
the nature of this relationship, the IEEE30 bus test system shown in Figure 3.5 is used.

The system is stressed by increasing load until the poirdliafpse under different network
topologies. All RPRs except the slack bus are monitored, as wellysiem VSM. Load is

increased in the entire system to represent stressed operating condisters I8ad is increased
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in different directions in order to account for uncertainty in lbadavior. The base case load is

randomly perturbed and load is increased based on their proportion to the total imitial loa

28

4726

29

30

27

28

v

Figure 3.5. The IEEE30-bus test system

Several contingencies including all N-1 and various N-k contingendibsgenerator and

transformer outages are considered. Generators are dispatcbadnipll certain pattern which

can be obtained from market clearing auctions or a merit order file.
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Figure 3.6 and Figure 3.7 show the relationship between the RPRs antbw§dherators 5
and 11, respectively. Thgaxis contains the RPR, whereas th@xis contains the amount of
VSM. From the pictures below, the RPR of generator at bus 5 shbmeaa relationship with
system VSM, whereas the RPR of generator at bus 11 has a mdratigueelationship. It is
important to remember that the VSM is obtained from the PV suwhich have been already
introduced in Figure 3.2 and Figure 3.4.

During normal load conditions, the system is operatinB;at:, represented as poiatin
Figure 3.4. As load is increased in the area, the current opepaiimgshifts to the right on the
curve until it reaches poimt with a total system load &fax« VSM is defined as the difference

between the maximum load that the system can withstand and teetdaad, i.e.\VSM = Rjjsal

- Pmaxe

700 -

600 e
=
=

500 @

= a
E 400 Z';
E 300 2
> é’-

200 3
o

100 o
wm

0

RPR of generator @ bus 5 (MVAr)

Figure 3.6. RPR and VSM relationship for generator 5
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Figure 3.7. RPR and VSM relationship for generator 11

In order to understand how RPRs vary with VSM, the location of pashbwn in Figure 3.4
must be translated to Figure 3.6 and Figure 3.7. When the systerdes laapoint in Figure
3.4, the RPRs of generator 5 and 11 in Figure 3.6 and Figure 3.7 withiredal OOMVAr and
140MVAr, respectively. As system load is increased to reaehpthint of instability, the
operating point moves along the dotted lines represented in Figura@Fgure 3.7 from upper
right corner to the bottom left corner.

For some contingencies, the RPRs of generators 5 and 11 willnyeletely exhausted
before the voltage collapse happens (cases where the dottedtinespt the y — axis in Figure
3.6). However, for some other contingencies, there will stisdrae RPR left when the system
reaches the point of voltage collapse (cases where the dagedrtercept the x — axis of Figure
3.6 and Figure 3.7).

Cases like the ones shown in Figure 3.7 have been observed in Hiarktemd are deemed

to be cause by ehoke ofbf reactive support due to excessive transmissiéniddses. Excessive

www.manaraa.com



27

losses in transmission lines do not allow reactive power to beedsl to areas in need of
voltage support.

Despite the causes of voltage instability, both Figure 3.6 and Fagunadicate that linear,
as well as quadratic relationship between RPR and VSM may.codce characteristic of the

relationship will determine the order of the model used to relate both variables.

3.7 Effect of capacitor/reactor banks

Capacitor and reactor banks must have their effects accounted ttogyaare not used as
regressors in the multi-linear regression models. The objective of not mglidise is neither to
neglect nor to diminish the importance of capacitor/reactor banksiditional reactive power
support sources. Nonetheless, there are two main reasons thdétutedtto the decision of not
using capacitor/reactor banks as regressors in the MLRMs.

The first reason is that capacitor/reactor banks directlgtafie amount of RPR available at
dynamic VAR sources. In fact, there are reported casesevdapacitor banks are switched in
order to preserve dynamic reactive power reserves such asatgesieand synchronous
condensers as indicated by Sandberg, L. et al. (1994) and Nirenberg, S. AA. (

In order to visualize such influence, a portion of a 1648 bus testnsyistaused and
represented in Figure 3.8. The simulation demonstrates the dftbet @apacitor bank located at
bus 28 on rotating reactive power reserves nearby. In order to donsate®ns considering
both the cap banin andoff have been performed. The cap bank is a 4xX50MVAr (4 blocks of 50
MVAr each). Load is then increased in the area to simulatstemsystress under a fixed network
topology. The RPR of generator located at bus 26 is monitored durihgathencrease process.
Other generators are affected to a different extent, based on theiceletstances from the cap

bank and will not be shown here for simplicity.
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Figure 3.8. Local portion of the 1648 bus test system

Figure 3.9 shows that the RPR of generator 26 is shifted toghiewhen the cap bank is
turned on. This effect is normally expected and more RPR is blada generator 26 when the

cap bank is on than when it is off.

Effect of Cap banks on rotating RPRs

1000
g 900 + Cap. Bank off
é 800 =—Cap. Bank on
g’ 700
g 600 Y
i 500 Shifting of the curve to the right o
= 400 ""....é..-“"
S 300 ﬁ.-
S 100 R
(] oo** ¢ " gut
% O Y ™
> 0 50 100 150 200

Reactive power reserve (RPR)

Figure 3.9. Effect of capacitor reactor banks on rotating RPRs
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Therefore, the effect of the capacitor bank is captured biRBfes of generator so that they
do not need to be used as additional regressors in the derivatidcRdl84 Another reason why
capacitor banks should not be included as additional RPRs comes fromhdent discrete
characteristic of these devices. Capacitor bank RPRs do not hanaoth variation with system
VSM.

Figure 3.10 shows how the capacitor bank RPR varies as sysenmtreases for a given
network topology. Such non-continuous behavior (discrete steps) reduces the ajuale fit
between RPR and VSM and produces large residuals (errors). Thismmious characteristic
also distorts some of the statistical properties of the modelcasicentrates the data points on
the values represented by the step positions of the bank. Such distarstatistical properties
will cause a significant departure from the normality assumpifotihe residuals distribution

Kutner, M. et al. (2004) and Lin, Z. C. and Wu, W. J. (1999).

Capacitor bank RPR

S 1000
= 900
.% 800 - Cap Bank reserve
S 700
g 600
E‘ 500 Large residuals
2 400
»n 300
© 200
S 100
S o0 :
0 50 100 150 200 250

Reactive power reserve (MVAr)

Figure 3.10. Capacitor bank reactive reserve variations with VSM
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Based on the two aforementioned characteristics, it has been ddeedechpacitor and
reactor banks will not be used as regressors in the MLRMs. Nalass$, their effect on system
performance is still captured as they relief rotating reacpower sources and consequent

impact on their RPRs.

3.8 Investigation of RPR definitions on performance

In order to investigate the effect of higher order termsherptecision of VSM estimation, a
nonlinear regression model is used to relate each RPR in tleenstgs the amount of VSM as
shown in (3.2). A third degree polynomial is initially used in order to account for the raoitine
of the relationship.

VSM =z a+ Qg +yQa+uQ3+... (3.2)

In case several RPRs are available, equation ¢2u2)e extended to (3.3) in order to fit a
polynomial relating VSM and all RPRs in the systdm(3.3), Nys represents the number of
RPRssrepresents the scenario or contingencyiaegresent the machine selected.

Nys ~ Nys - o Nus .3
VSMSza+;[)’i- F'és+iZiVi'( K +;M‘(Q'F§S) (3.3)

After a voltage stability assessment, the amouihtéSd and RPRsQg) can be obtained for
a few scenarios. By using a simple polynomial ffjpaithm, the coefficientsy, S, y andu can be
identified and a preliminary assessment of thecefé higher order polynomial models can be

inferred for some test systems.
3.8.1 Effect of polynomial order

All four definitions of RPR are investigated in erdo verify how they vary with the amount
of VSM. It has been noticed that the last two dgbns of RPR introduced in (3.1) presented a

more accurate relationship with VSM compared to finst two. In another words, their
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relationship with system VSM had a better fit amdduced more precise estimations when
compared to the first two definitions as reported.eonardi, B. (2008).
However, those definitions cannot be practicallypliemented sincéQ, and Q. are not

known in online operations. Therefore, the RPRherrtused in these studies was the one with

respect to the constant maximum vdRigy . The definition Qrcc can also be used once the

capability curves of generators are made available.

3.8.1.1 System A: 23Buses

0o Qgrcm- Constant maximum reactive power definition
A total of fifteen contingencies are applied tostkystem, while the RPR and VSM have
been sampled from the PV curve calculated for eacingency. Polynomials of different order

have been fit in order to analyze the effect ofrttealel order.
Figure 3.11 shows that the by increasing the oofi¢he model, the accuracy of estimations

also increases.

1st order model

3rd order model
10 —

Estimation Error in %
o

Estimation Error in %

-40

7 8 9101112131415
ntingencies

L L L L L L L L L L L L L 1 L _10 | L L | | |
1234567.89.101112131415 123456
Contingencies Co

Figure 3.11. Comparison between linear model aglddriorder model
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e Qgcc - Capability curve definition

The second definition of RPR tested considers #palaility curve of the machine. Similarly
to the first definition of RPR, the higher order aab provides a better fit than the simple linear
model, indicating that capturing the nonlinearitiytioe relationship may be helpful as far as

accuracy is concerned.

1st order model

3rd order model

30

201

10

0

Estimation Error in %
Estimation Error in %

40123450678 9101112131415 2 1 2345678 9101112131415
Contingencies Contingencies

Figure 3.12. Comparison between linear and higha®ranodel
e  Qgy. - Minimum voltage limit definition

The use of this definition of RPR to estimate V3\presented next in Figure 3.13.

1st order model -12 3rd order model
x 10
55— - Pt
X X
£ £
S S
(& (0
S 5
= =
E £
-10 L L L L L L L L L L L L L L L 2 . . . L L L L L L L | L L L L
123456 7 8 9101112131415 123456 7 8 9101112131415
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Figure 3.13. Comparison between linear and nonfimeaiel
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It can be noticed that the higher order model prissa much more accurate estimation of
VSM when compared to the lower order model. Howgsgerce this definition of RPR uses
information about the point of minimum voltage ieal time, it cannot be implemented in
practice.

e Qgc_ - Voltage collapse limit definition

Similarly to the previous case, the RPR definitainthe point of collapse shows a more
precise estimation of VSM when a higher order maodelused as shown in Figure 3.14.
However, since the amount of reactive power dispatcat the point of collapse cannot be
identified in real time, this definition also cartriie implemented in practice.

1st order model x 10 3rd order model

Estimation Error in %
Estimation Error in %

-30

123 456 7 8 9101112131415

1 2 3 456 7 8 9101112131415
Contingencies Contingencies

Figure 3.14. Comparison between linear and nonlimealel

QgL and Qg definitions are also known adfectiveRPR definitions, for they represent

the effective amount of RPR available until systanditions are violated (voltage and stability

conditions, respectively). On the other haRdcy and Qrcc are also known agchnicalRPR

definitions, for they are technically existent eversome cases even after the system has faced a

voltage collapse.
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3.8.1.2 System B: 1648 Buses

The same methodology has been tested in a larggemsyin order to verify if the
improvements in performance would be seen on né&svof realistic size. All four definitions
except the capability curve are tested due to ulzdoiiity of data regarding the curves. The
reason is that the curves were not available fisrdase.

This system has total of 49 generators and 23 haea selected to be used in the prediction
model. Generators with best fit are selected. Cunedted and fifty critical contingencies are
used to generate the data. Linear and quadratyngulials are considered in this case and

results are presented in Figure 3.15, Figure 3ntleRigure 3.17.

e Qzcum - Constant maximum reactive power
It can be observed that the quadratic polynomialahbetter fit with smaller estimation errors
when compared to the linear model. This resultfoeaes the fact that a higher order model can

indeed improve VSM estimation performance.

1st order model 2nd order model
50 . . 10 . .

-10H

Error Estimation in %
Error Estimation in %
[}

-15H

- L - -20 I I
0 50 _ 100 150 0 50 100 150
Contingencies Contingencies

Figure 3.15. Comparison between linear model aradicuiic model

e Qgy - Minimum voltage limit definition
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Similarly to what has been done for the smalletesys the RPR definition with respect to
minimum voltage values is also investigated hetge Tigure below not only shows that this
definition of RPR enhances the precision of VSMneation, but also shows that the quadratic

model has better performance than the linear one.

1st order model 2nd order model

L, m"f"‘m\' rLrJ| JI“||L[

0.2r

o1 ‘I"|f4"'""|J| i)

o

-0.1+

-0.2¢

Error Estimation in %
Error Estimation in %

-0.3+

0.4}

L L L -05 L I L
0 50 100 150 0 50 100 150
Contingencies Contingencies

Figure 3.16. Comparison between linear model aradicuiic model

This is an important observation as it indicates tiigher order models tend to improve the
accuracy in estimations.
e Qgc. - Voltage collapse limit definition

Similarly to the previous definition, the precisiohthe quadratic model is higher than the
precision of the linear model. However, this defon of RPR uses the amount of reactive power
produced at the point of collapse. Since systemabges do not know those values beforehand,

it is not possible to use this definition in praetiapplication for online VSM.
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Error Estimation in %
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Figure 3.17. Comparison between linear and quacdnabidel

Overall, we can conclude that the minimum voltagd @ne collapse point definitions showed

a more precise estimation of VSM when comparedhéoniaximum constant reactive power and

the capability curve definitions. However, the aelimplementation of these last two definitions

(QrcL @andQgy, ) is not practical since system operators do notkthe value of the maximum

dispatchable reactive power at those points, tbti®@ing able to calculate the RPRs.
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CHAPTER 4. DEVELOPMENT OF THE ONLINE VSM MONITORING

METHOD

4.1 Database generation and information flow
Before developing the MLRMs and the MLRM-IDtool, thorough VSA needs to be
performed in order to gather data that will be usgdnodel development. The VSA takes into
account various practical aspects involved withsystem while capturing a massive amount of
data.
Initially, essential information regarding systewesario, critical network topologies and

load forecast is given to system planners as showne figure below.

*Power flow case
«Contingency list .
Forecasted Load and Offline model

generation dispatch list

* Unit Commitmentlist deve|0pm ent

Real time model
implementation

SCADA
MEASUREMENTS

¥

eImplementation of offline
developed modelsin
SCADA/EMS

PSS/E

(automated |I~ Data |

via python) base

planner
MATLAB/WEKA
(ANN/DT
development)
(4
{ _— N\
N~ //\
System \(
operator Nl 2¥
T

Figure 4.1. Overall methodology description

Controlroom
display

Large scale system simulation;
several scenarios and network
configurations are considered

Next, all the system simulations are performedgi§i8S/E® and the variables of interest are

stored in a database for future MLRM and MLRM-IDtdevelopment. Figure 4.1 describes all
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the steps involved in the database developmenepspdrom its creation until the final step of
online visualization in SCADA/EMS system.

System scenarios are created using informatiortegktleo future loading conditions and a
contingency list that includes outages with higlpeobability of occurrence. A list of the
generating units used in the generation increagerpas also provided, as well as the loads that
are increased. Once the operator has all thisnrdton in hand, extensive system simulations
are performed in order capture the behavior of ghstem for the specified scenarios and
contingencies. In order to accelerate the data Haselopment, PSS/E® has been automated
used python language. More details regarding thenaation process will be provided in the
next section.

Once the database is generated, the design of ML&Msthe MLRM-IDtool can finally
begin. After both tools are properly developed tasted, they are used in real time operations

via SCADA system as shown in Figure 4.1 above.

4.2 PSS/E® automation using python

In order to enable the methodology to be appliedatger networks, commercial grade
software needed to be used for system simulatrothi$ research, PSS/E® has been automated
via python for large system simulation.

Python is an open source, flexible, object-orienpgdgramming language. It has been
recently gaining popularity due to its simple syn&nd capability of building high quality
applications. PSS/E® has a python application @noginterface (API) that enables python
scripts to control and utilize several activitiesiftions in PSS/E. These APIs enable any script
written in python to access internal PSS/E fundtiand variables, execute and output simulation

data into files.
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The automation process not only speeds up the afionl of several scenarios but also
enables the methodology to model various systenpoaents in greater detail. Figure 4.2 shows
how the automation process generates the databdsmwatrols the flow of information.

Initially, all simulation parameter are provided bystem planners to a python interface
which controls the operation of PSS/E. Iterativensgio and contingency processing generates
all the data which is stored in the database. Aliables stored are listed in the picture and
described in Table 4.1.

Once the database has been created, WE#Al Matlaf§ are used to develop the MLRMs

and the MLRM-IDtool.

Advantages
- Power flow case
- Subsystems - Large systam simulation
- Contingencies - Modeling capahbilities

Aftributes
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Figure 4.2. Database automation process
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Figure 4.3 shows the interface developed in pytaod used to automate PSS/E® for
efficient scenario processing. The objective toeligy a more user friendly interface comes from
the possibility of practical implementation of theproach in a utility scale system.

Although the developed application interface istg@imple, it avoids users from having to
make tedious modifications into the python scriply a few files are needed in order to begin
the simulation. A snapshot of the developed interiia shown in Figure 4.3.

The first blank field is responsible for loadingthower flow file selected by the user and
defining the directory path to store output filAssimple click on the open button will enable the

user to select the power flow case that he wantsrtahe application on.

Iowa State University - Data base generator interface !E E

Information [CTo[=]| ek

Application developed (@
lowa State university by

— Data baze parameters and file information

- Bruno Leonardi - Enter the working folder and select the power flow file [ zav]
Wergion 1.0.0 - 2010
| Open
— e

Enter the number of LID s used to generate the MLEM I [Must be an interger betweaen 0 and 50)

Al rights rezerved

Enter the name of the output file: .out [[ata base file]
Enter the name of the subspstem file: .sub [Subsystem file]
Enter the name of the monitaring file: .mon [Manitoring file]

Enter the name of the contingency file: .con [Contingency file]
Cancel | Ok |

Figure 4.3. Python - PSS/E® interface developedddiware automation

After selecting the power flow case, the numbeloatl increase directions is provided in the
second field. Any number between 1 and 50 can teiged in this field. In fact, more LIDs can
be used depending on the user’s need.

The third field represents the name of the outpes fand is determined by the user. During
simulation, several variables are stored in thepwiufiles under their respective name. A

complete list of sampled variables is given in Eadbll. Given the large number of simulations,
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several files are necessary in order to store ah dvhen accounting for several LIDs and
contingencies.

The next three fields are similar to various PSS/&@ivities such as PV curve and
contingency analysis engines. The three files gieetine fourth, fifth and sixth fields represent
the studied subsystems (.sub), the monitored eltsmiemon) and the contingency list (.con)

used during the VSA.

Table 4.1: System variables sampled during VSA

Variable name Description
Vmag Voltage magnitudes at selected buses (p.u.)
Pflow Active power flow on selected lines (MW)
Ploss Active power loss on selected lines (MW)
Qflow Reactive power flow on selected lines (MVAr)
Qloss Reactive power loss on selected lines (MVAr)
Cmag Current magnitude on the lines (p.u.)
RPR Reactive power reserves at selected gene(bbiAr)

Once all files are made available to the applicate click on the “OK” button will make
PSS/E® accept these files and run the applicatidincomplete VSA considering all
contingencies in the “.con” file is performed foach different LID. Once the simulation is
completed, all selected variables are stored ipuwiuiles for each LID and all contingencies.
The process is repeated until all LIDs are considieAs of now, there is no commercial grade
software available in the market that performs tasks herein described. Therefore, the
automation of PSS/E represented not only an impbrséep in the methodology but also a

critical one.
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Once the simulation is finished, data preprocessimgcessary to prepare the output files so
that they can be used in Matlab and WEKA. Visuaitanacros are used for efficient data
preprocessing. This is done in order to clean ttpud files from headers and other simulation
information used to monitor the flow of the apptioa.

After all data is gathered, preprocessed and storede data base, different programs are
used in order to generate the MLRMs and MLTM-IDtool the proposed method, Matlab is
used to design the MLRMs and also the ANNs usethenMLRM-IDtool. WEKA is used to
develop the DTs, KNNs and SVMs used in the MLRMdalt The WEKA program is an open
source program that contains several machine leguadgorithms for data mining. The software
has been developed and maintained by the UnivesEMyaikato in New Zealand, Hall, M. et al.

(2009).

4.3 A two-Stage VSM estimation methodology

The methodology proposed in this research profecomposed of two main stages formed
by the MLRMs and the MLRM-IDtool. The MLRM-ID-toalses system variables presented in
Table 4.1 to identify what MLRM should be used iBM estimation. Once the MLRM-IDtool
properly identifies which model to use, the seléd#.RM uses RPRs monitored in real time to
provide an estimation of VSM. After developed amdined offline, both MLRMs and the
MLRM-IDtool are used in the online environment @rline VSM estimation.

Figure 4.4 shows how the complete scheme is toneimented. Monitored data from
SCADA/EMS system is passed onto the MLRM-IDtool, ieth will select the appropriate
MLRM. RPRs are then passed onto the selected MLRMan estimation of system VSM is

made. The estimated VSM value can then be showrdiaplay in real time operations.
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In this example, it is assumed that four MLRMs arecessary to account for all
contingencies and load increase directiorBased on the current operating condition and
network topological structure, the MLRM-IDtool wilelect the most appropriate MLRM to
estimate VSM in real time. The corresponding MLR&lested represents the closest association
between the trained MLRM-IDtool and the current raiag conditions. Once the combined
architecture is in place, only real time SCADA/EN&ta available in the control center is

necessary in order to estimate the amount of VSM.

Online voltage stability margin estimation tool

- .
—
2%
&
Visualization in real
1 time operations
2 A .
£ Other
5 g SCADA Estimated VSM
9 variables = [TTT] ]
@
= MLRM - IDtool Lower limit of M Upper limit of

confidence confidence
interval interval

=S

MLRM selection and VSM
estimation

L) \
a°je,
\J
Ly

Figure 4.4. Overall implementation of the proposatine VSM estimation tool

The MLRMs are composed of several coefficients tinraight the participation of each RPR
to estimate VSM. A sum of all contributing RPRslwiétermine the existent amount of system

VSM. Practical results have demonstrated that ¢hé&w MLRMs are required in order to

! The number of MLRMs varies according to desigrunements, making the number of MLRMs vary fromecas case. In this case, four
MLRMs are used to exemplify how the approach islemented.
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achieve more accurate results. More importantlyhas been observed that the number of
MLRMs does not increase with the size of the systethe number of contingencies considered,
Leonardi, B. and Ajjarapu, V. (2011).

Figure 4.4 indicates that more than two MLRMs vagften exist since a wide range of
contingencies and operating conditions are constldn the presence of more than one MLRM,
the task of identifying the correct model becomesical. The identification of the proper
MLRM when more than two models are available igpacal case of multiclass classification.

Binary classification problems only have two clasde be distinguished (e.g., classify
system condition as secure/insecure, stable/uestatd). Multiclass classification problems are
characterized for having more than two classestdistinguished (e.g., classify job candidates
according to their education: elementary schoahtschool, college, graduate school, classify
quality of a product based on some aspects: vesg,ggood, regular, poor, very poor).

An introduction to the problem of multiclass cldissition will be given next, as well as an

introduction on the theory of multilinear regressimodels.
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CHAPTER 5. THE USE OF MULTI-LINEAR REGRESSION MODELS

FOR ONLINE VSM ESTIMATION

5.1 Mathematical formulation of MLRMs
The general formulation of a MLRM for a given obs#ioni is given in (5.1), with all
variables described in the sequence. The varial#eresents the dependent variable (VSM), the
x variables represent system RPRs, the variablgs and » represent the coefficients for each
RPR in the model and represents the error term. The indeccounts for the number o samples
available, whereas the indeXesandk account for the number of RPRs available.
Y =agtapy +reoh top f

(5.1)
for{i=1,..n;j=1..pt=1.p k=1 p; with k= [}

Although quadratic and crossed terms are pr(f;gﬁmd Xk ) the model is still linear on

the coefficientst, » and @ and hence can be solved by the method of leastrsaur robust

least square, Kutner, M. et al. (2004).
In case several observations or samples are alailalthe model, equation (5.1) can be

represented in the vector-matrix form as showrbi)( where theoefficient vectof is given

byB:[aO’L ’apv))lvl— ,yp(p_l)lzl— ’wll" ,C()pT

y=Xp+e¢ (5.2)
Adapting the formulation given in (5.2) to the pieri at hand, vectoy will represent VSM
measurements obtained from offline system simuladowill be a matrix containing monitored

RPRs ana represents the residual or errors.
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The first column of matriX is formed by a unitary vector (it contains 1’srfréhe first until

the last vector position) to account for the linederception coefficienty,. All the remaining

columns ofX represent a RPR, a product of RPRs, or a squaP€dd® described in (5.1). Each
row of matrix X and row of vectory represents a sample of the RPRs and system VSM,
respectively.

The samples of RPRs and VSM are taken at diffgreimits along the PV curve, enabling the
MLRM to be used at different loading levels alohg LID. Thecoefficient vectof is found by

minimizing the sum of the square of the residudbdews.

. 1
Min]e[* = Min 5| y-xp| (5.3)

The solution of problem (5.3) is defined as thestesguare solution, Kutner, M. et al. (2004).
The best linear unbiased estimation (BLUE) for\ketor of coefficient$ is given by equation

(5.4).

~ -1
B=(X™X) (X (5.4)
Once the vector of coefficienfisis found, the MLRM regression model can be usduhero

estimate VSM. An estimation of the VSiector §) is obtained by multiplying the vector of

coefficientsp by the matrix of monitored regressotsas follows.

)A/:XB (5.5)
The difference between the estimated VSM valggsaqd the actual VSM valueg)(is

defined agesidualsor errors (g).
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e=y-y (5.6)
Confidence intervals for the estimated VS§) €an be obtained by modeling the residual
probability density functionpdf). Once obtained, the confidence interval (c.i.) t@n be used

to handle uncertainty of VSM estimation in the d@ling manner.

y=Xp=ci (5.7)
Equation (5.7) represents how the MLRM are to bedum the online environment to
estimate VSM. The online monitored RPR vecrié multiplied by the regression coefficient
vector @) to get an estimation of VSM. The confidence wéris obtained by modeling the

residualpdfand is later added as bounds to the estimated VSM.

5.2 Uncertainty in system stress direction

In order to explain how uncertainty in load inceadirection and changes in network
topology affect the relationship between RPRs ar@MVY different contingencies and load
increase directions (LIDs) have been used to sthessystem.

Figure 5.1 shows how these two different typestiass affect the amount of VSM. In long
term voltage stability studies, a voltage collaps®y occur in two different ways as previously
mentioned. A voltage collapse situation can ocguimbrease load constantly followed by RPR
exhaustion and consequent loss of voltage cordrahirough equipment outages, which makes
the stability boundary to move closer to the curamgerating point, Kundur, P. et al. (2004).

Uncertainty in LID has been incorporated through ¢bnsideration of each load as a random
variable following a normagbdf, with mean equals to the base case load and sthddsiation

equals to 15% of base case load. After randomlyug@ng the base case, different LIDs are
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obtained by systematically increasing the loadspronally to their initially perturbed

amounts.

(UIWAIN) e21eD

Q|-

System contingencies change
stability boundary
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i, ///ﬁ/b
@fe/) o,
. 9% 7y
Different load > ”70, e 9
increase Sose . Sy,
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Area load
space

Y

Parea (MW)

Figure 5.1. Variations in VSM due to different loadrease directions and network topology

The idea of increasing load in different directiohas the objective to account for

uncertainties in load forecasting tools, which esmffom_6% to 10% for day ahead forecasts,

Makarov, Y. V (2010). In case more precise stadtinformation about load increase direction

is available, it can certainly be used to provideae realistic stress direction to the system.

An extensive contingency list is used in order dwer various possible network topologies

that may be encountered in daily system operatibimis. includes all NERC category B (N-1), C

(N-2) and D (N-k) outages. Category B represengssituations where one system component

(out of N system components) is offline, categorye@resents the situations where two system

components (out of N system components) are offlime category D represents the situations
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where k system components (out of a total of Nesystcomponents) are offline, NERC-TPL-

001-0.1 (2008).

5.3 Power system modeling and simulation
In order to investigate the phenomenon of long teottage stability, a static modeling of the
power system is considered in this study. The giexguations of the power system are described
in (5.8) and its solution is commonly known as poaver flow solution, which determines the
flows of power and values of network variables.
Npo+Npy
« Y Vi(Gycos@, -6, )+ B;sing, -0, )

=
Npq

Qk:VkZ Vj(ijsin(Hk—Hj)— BijOSGk—Hj ))

=1

(5.8)

Where:

Npyv - Number of generating buses

Npo - Number of load buses

P« - Active power on bus k

Qk - Reactive power at bus k

Vi - Voltage magnitude at bus k

Vv - Voltage magnitude at bus |

Gy - Conductance of KJ element on Ybus
By - - Susceptance of kj element on Ybus

Ok - Angle of bus voltage phasor of bus k
0; - Angle of bus voltage phasor of bus |
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A reformulation of the power flow equations desedkabove can be done in order to express
the system in the classical nonlinear algebraitesy®f equations form shown in is presented in
(5.9), wherex represents the unknown bus voltage magnitudes laaskepangles antrepresents

the load increase parameter.

f(x,2)=0 (5.9)

In order to collect measurements of RPRs and VSMeurseveral different LIDs and
network topologies, a systematic voltage stabdggessment is performed. As mentioned before,
PSS/E is automated in order to reduce the processing tifre large number of scenarios and
enhance modeling capabilities of system componertis. effect of discrete slow dynamics
devices such as ULTC, switchable capacitors/readtanks is also taken into account during the

simulations.
The base case load vectc(F?G, P, QL) contain all generators and individual loads thiit w

be increased during VSA. Each generator andilamgaried according to (5.10).

P, = P (1+ AKpg)
R =R (1+1Kp) (5.10)
Q, = (1+2Ky)

For each different contingency, system load ancegdion are increased until the system

reaches the voltage collapse point. In the aboueatean, PC;), Ff,) and Q represent the base case

active power generation, active power load andtreagower load at bus The variables

PG , F,: and Q represent the total active power generation, actiower load and reactive

power load at bus, respectively. The variabIerq,Kph,KQL_r represent the proportions or
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rates at which active power generation; active pdaad and reactive power load are increased,
respectively. Generators are dispatched according tmerit order file or based on market
clearing auctions.

After the VSA is performed for all contingenciesdddDs, the database used for MLRM and

MLRM-IDtool development is ready and the desigrihef models can finally begin.

5.4 Using MLRMs to relate RPRs and system VSM
After observing the relationship between RPRs aystesn VSM for different LID and
network topologies, it has been observed that MLRBI#d be successfully used to capture the
relationship between those two variables. Figu&i%.shown here once again to evidence that
the relationship between RPRs and system VSM cdinéer for some operating region, but that

as system conditions change, that relationshigbeanme quadratic.

700 A~ Linear portion
/ A o
600 - \ w8
_ 5
500 - 2 |®
= \)Ces'as N\\‘?‘N\ a
§ 400 - Q@e“ > 2
= Non-linear portion e o )
C_Ns 356 <
S 300 - o ®
> / ic-
200 - o |3
N 3
100 - 3 9
/ a
0 - ~ 1
0 20 40 60 80 100 120 140 160

RPR of generator @ bus 11 (MVAr)

Figure 5.2. RPR and VSM relationship for generatbr
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The relationship between the RPR of generator Hlsggtem VSM in Figure 5.2 is indeed
close to linear for certain range of operating pias pointed out in Bao, L. et al. (2003).

However, for loading conditions closer the pointcoflapse, the relationship between RPR
and VSM can become very nonlinear, evidencing dhgiadratic model would do a better job at
predicting VSM than a linear one.

After performing a detailed investigation on howH&Pare related with system VSM, it was
noticed that some generators have a linear rekdtipn(see Figure 3.6) whereas others have a
guadratic one (see Figure 5.2). Simulation resuilisshow that the inclusion of quadratic terms
in the MLRM not only improves the accuracy but adsihnances some statistical properties of the
model. Therefore, a more appropriate MLRM can b&iokd if those quadratic terms are
included.

Another important observation from Figure 5.2 iattthe data spread along the y-axis is
significantly wide in case several contingencies eonsidered. Therefore, due to the need to
account for several credible contingencies, moae tthe MLRM is usually necessary as a single
MLRM cannot accurately capture the relationshipneetn RPR and VSM for all considered
topologies. By considering more than one MLRM, éneor involved with VSM estimation can
be reduced as the confidence intervals for eachehayd made smaller.

Although the effect of changes in LID is not showrkigure 5.2, practical observations have
demonstrated that the effect is similar a netwopgotogical change. It is important to mention
that the data spread caused by different LIDs isenhocalized, rather than widely spread as
network topology changes.

Contingencies with similar amounts of VSM are gredin the same MLRM range as shown

in Figure 5.2. The data collected from those caanties will be used in the development of
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that specific MLRM. In order to clarify system be&fa according to RPR variation, the point of
maximum RPR in Figure 5.2 (around 150 MVAr) reprasehe initial loading condition of the
system, whereas the point of minimum VSM (0 MW)resents the point where system loses

stability and voltage collapse occurs.

5.5 MLRM developmental procedure

The procedure to develop and verify the MLRMs isalided in detail by the flowchart in
Figure 5.3. Initially, one MLRM is used to accodot all the LID and contingencies in the entire
VSM range and the 2c confidence interval of the MLRM is calculated. Doethe fact that the
data is widely spread, the2s confidence interval for the residuals will tendie large. If the
residual confidence interval does not meet thegeiequirements, the VSM interval is divided
in two and the process of MLRM development is répeaaiteratively until the desired
specification are met.

In this study, a 2o confidence interval smaller than106% of the upper limit for each VSM
range has been considered. For instance, a MLRMrit@y scenarios with VSM in the range
1000-600MW has to be further divided into two otMtRMs in case its +2c confidence
interval exceeds #00MW. The procedure is repeated until all thegiesd MLRMs meet the
specified confidence interval accuracy.

Another reason to select this approach to deterthm@emount of MLRMs is that MLRMs
that account for more critical contingencies widlvie narrower confidence intervals, since the
confidence interval is dependent upon the upperit liof the range. As more critical
contingencies have lower upper values for theigean the MLRMs that account for those

contingencies will have narrower confidence inté&sva
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Figure 5.3. Flowchart representing MLRM developrmeamd validation stages
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Another important observation is that the widthcohfidence intervals directly affects the
amount of required MLRMs. If narrower confidencéemvals are specified (e.6%), a larger
number of MLRMs would be necessary to cover all stiedied cases. However, the VSM
estimations of the models would be more accuratheaadded confidence interval is smaller.

On the other hand, wider confidence intervals (elh% would required less MLRMs to
cover all contingencies and LIDs. Nonethelessntloeels would have lower accuracy due to the
bigger size of the confidence interval. For pradtiapplications, some of the non-critical
contingencies (usually N-1) can be eliminated sd the amount of needed MLRMs is reduced.

In case the MLRM validation process fails due tolation of some statistical assumptions,
variable transformations (Box Cox) can be employedorrect for the violations, Box, G. E. P.
and Cox, D. R. (1964). If the variable transformatiis not able to remove the statistical
violations encountered, more simulation can begoeréd and added to the training set so that it

captures the behavior of the system under all stena

5.6 MLRM validation procedure
Once the MRLRs are developed, a few statisticgbgnoes must be validated beforehand so
that the models can be used in practice. Model wiqverification investigates whether basic
statistical properties about the MLRMs are validl aa usually performed through residual
analysis Among the main properties involved with MLRMsspmoskedasticityand normality
distribution of the residualgre two important properties that must be attaitted minimum

level, Kleinbaum, D. et al. (1998) and Kutner, 4004).
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5.6.1 Homoskedasticity

Homoskedasticitys the assumption that observations of the esn tg;) are drawn from a
probability density function of constant varian&wdenmund, A. H. (2006). In other words, the
residual vectorg) has constant variance throughout the entire rahtfee regressed variablg)(

Figure 5.4 and Figure 5.5 show the residual distidim in the presence of homoskedasticity

and heteroskedasticity, respectively.

Probability Ideal conditions - Homoskedasticity
distribution of

the residuals ()

&0

-
-

Regressed variable jr

&<l

Figure 5.4. Homoskedastic residual distribution

An equivalent interpretation for homoskedasticgywhen the dependent variable (y) has
constant variance for any combination of the indejeat variables {s) as shown in equation

(5.11), Kleinbaum, D. et al. (1998). Violation ¢fet homoskedasticity assumption is defined as

heteroskedasticity
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var(e)y, xx x, =" (5.11)

Violating conditions - Hetersokedasticily
Probability
distribution of
the residuals (&)

()

e

Figure 5.5. Heteroskedasticity residual distribmitio

Although the assumption of homoskedasticity maynsesry restrictive, correction for
heteroskedasticitynly needs to be applied when the data shows fiignt departure from
homoskedasticitKleinbaum, D. et al. (1998) and Kutner, M. (2004).case corrections are
needed, Box Cox power transformation is the trad#dl remedial action used to correct for

heteroskedasticity, Studenmund, A. H. (2006).
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5.6.2 Normality of the residuals

Along with homoskedasticity, the distribution ofethresiduals is also expected to be

approximatelynormally distributedwith zero mean and constant varianée

e~N (0,02) (5.12)

Since normally distributed random variables contiound 95% of its observations within
the 2 standard deviation range 2@, a confidence interval for the residuals can tien
established.

The assumption that the residuals are normallyilkliged is notstrictly necessary for the
least square fitting of the regression model todhdloreover, the hypothesis tests used to
validate the model are robust in the sense that exreme departures from normality would
cause spurious results. This assumption is basethewretical and experimental results as
pointed out in Kleinbaum, D. et al. (1998). Howeveince the confidence intervals for
estimations of VSM are based on the assumption ttietresiduals are normally distributed,
significant departure from normality would renderogdy accurate confidence intervals for the

MLRMs.
5.6.3 Hypothesis test

After checking for homoskedasticity and normalipnditions, a hypothesis test is carried out
in order to assess the significance of overallesgjon, Kutner, M. et al. (2004). The objective of
the test is to verify if all considered independeatiables X;) are meaningful in explaining the

dependent variablg). The test is formulated as shown in (5.13) -9p.1
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e Hp - Null hypothesis All independent variablesx] considereddo not explain a

significant amount of the variation ig)(

a;=y,=0;=0 forvje{lp] vke{lp(p-3/2

(5.13)

e H, - Alternative hypothesisThe model isvell explainedby the independent variables

(%):

a;#y, 2o, #0 forvje{lp} vke{lp(p-1)/2

(5.14)

The F statistics used in the test is defined ib5p.where and/ISR(regression mean square)

andMSE (error mean square) are defined as shown in emsafb.16) and (5.17), respectively.

- _ MSR
MSE

n

> -y)

MSR= 2+ —
k
2y =%)°
MSE= 1L
n—k-1

The formal hypothesis test can be written forma#lyshown in equation (5.18).

_ MSR

F=MsE”

F ,a reject H,

k,n-k-1,1-a

(5.15)

(5.16)

(5.17)

(5.18)
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After calculating theF statistics, the result is compared with the ailtipoint of the F

distributioan , Where: a represents the preselected significance lévisl,the number

,n-k-1,1-«
of regressors analis the total number of samples used. If the cateal value for th& statistics

exceeds the critical point for the F distributitimen the null hypothesis ¢His rejected.
5.6.4 Multicollinearity

If two or more independent variables show strongdr dependence, the mat(ixTx) can

become ill conditioned and computational problengs/ rarise while calculating the regression
coefficients (1. Therefore, in case two or more RPRs are highlyetated, only one RPR is
included in the model. This action helps us to dwvihie occurrence of multicollinearity and
enhance computational aspects of model calculatidn. practical situation where
multicollinearity occurs is when two identical mauds are placed in the same bus (or nearby
buses), thereby behaving in the exact same wagrassfreactive power production and reactive
power reserve depletion is concerned.

Once the validation process ends and all the MLRMge been created, they are made

available to online VSM estimation.

5.7 Results on sample systems
The proposed methodology has been tested on tviereht systems in order to verify its
applicability to real sized systems. The IEEE30 tas$ system and a larger case representing the
eastern interconnection of the United States age s test the methodology. It is important to
mention that this large scale system represengstmal system, which is composed of more than
22 thousand buses. Results obtained from the siimigawill further strengthen the practical

capabilities of the method.
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5.7.1 Description of test systems

The IEEE 30 bus test system was first used to imeid¢ the methodology presented on the
flowchart in Figure 3.5. This system is compose®@fbuses, 6 generators, 22 loads, 35 lines
and 6 transformers. A list of 50 contingenciesudahg NERC category B (N-1), C (N-2) and D
(N-K) contingencies is used to account for différeetwork topologies, including all (N-1)
contingencies. Fifteen random LIDs are used inota@ccount for uncertainty in load increase
direction, totaling 750 scenarios (contingency B)10nce the list of contingencies and LIDs
are defined, the VSA begins in order to generatedéitabase used to design the MLRMs. A

summary of the IEEE 30 bus test system is giverainie 5.1.

Table 5.1. Description of the IEEE 30 bus testesyst

DC FACTS

BUSES PLANTS MACHINES LOADS BRANCHES TRANSFORMERSLINES DEVICES

30 6 6 22 35 6 0 0

The next test system is a real representation efetistern interconnection of the United
States. According to NERC, the North American poged can be divided into three main
regions: the western interconnection (WI), the easinterconnection (EI) and the largest part of
the state of Texas (ERCOT). Figure 5.6 shows apattimage of the national power grid and

its three major administrative regions.

www.manaraa.com



62

NERC INTERCONNECTIONS

WESTERN '
INTERCONNECTION ~ EASTERN
’

~ INTERCONNECTION
s ~
s -~

ERCOT s
INTERCONNECTION

Figure 5.6. North American interconnections

The EI contains a total of 136 different areas, clvhcan represent different generating
companies, transmission companies and load seremigies. Some of these areas are
geographically large and need to be further dividet® zones. A total of 474 zones are
represented in the El, with a total forecasted ld@chand of approximately 650 GW for summer
2010, NERC TSD. (2010). Table 5.2 contains a desdaglescription of all system components

present the Eastern interconnection.

Table 5.2. Description of the United States eastéarconnection

DC FACTS

BUSES PLANTS MACHINES LOADS BRANCHES TRANSFORMERS LINES DEVICES

48282 5862 5312 28613 62033 18675 23 0
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Given the continental characteristics of the E¢, dhniginal power flow case used to represent
the entire interconnection can be reduced arounar@a of interest. Moreover, considering the
fact that reactive power cannot be transferred ldigjances without being consumed, the
reduced system should be able to capture majol teaative power flows and voltage stability
behavior. This reduction in system size is impdrtaacause it simplifies the VSA and also
reduces the computational burden of running huredoédscenarios. A summary of the reduced

El case is shown in Table 5.3.

Table 5.3. Reduced case of the United States adsterconnection

DC FACTS
BUSES PLANTS MACHINES LOADS BRANCHES TRANSFORMERS LINES DEVICES

21388 4648 4815 14766 44622 7709 23 0

A total of ten LIDs are considered to account focertainty in load increase direction. The
contingency list comprises 190 critical outagessed to represent network topological changes.
NERC category B, C and D were included in the Ifdt. (N-1) contingencies in the 161kV
network and above have been considered. A totB900 scenarios (contingency + LID) are thus
used in this case. After reducing the size of §fsesn, one particular area is selected to conduct
the study. The studied area contains 815 busesia¢Bines, 570 loads, 1005 transmission lines
and 149 transformers

The objective to use systems of different sizese igerify if the number of required MLRMs
would significantly increase with an increment ystem size. It will be show later that the
number of MLRMs does not increase with the sizethsd studied area, thus creating the

expectancy that the technique can be successfufiiemented on even larger networks.
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5.7.2 The design of MLRMs

The MLRMs designed for the IEEE30 bus test systeen paesented in Table 5.4. Five
MLRMs are found to be necessary in order to colerdntire set of selected contingencies and
LIDs, according to the specified accuracy. Sinasenall number of RPRs is available in this test
system, all RPRs but the slack bus are selectaégusssors, totaling 5 RPRs. If all 5 linear
terms of the RPRs are considered along with thessed and squared terms, each MLRM will
have a total of 20 regressors for this case.

The VSA identified that the most critical continggrhad a VSM of 124 MW, whereas the
less harmful one had a VSM of 620MW. As expectbd, majority of the contingencies do not
reduce the VSM of the system significantly, a fihett can be noticed by the number of test data
available in each model.

The independent test samples have been obtaineddifterent LIDs than the ones utilized
on MLRM design. Each LID is randomly created byusssg each load is varied using a normal
pdf with mean equal to the base case load and a staddaiation of 15% of the base case load.
After randomly perturbed, the loads are increaseggationally to their initial value until the
voltage collapse point is reached.

Each MLRM is able to estimate VSM with high accyréar various load levels (any point
along the PV curve) and for different LIDs than trees used during the design phase. This is an
important result since uncertainty in LID is anvitably characteristic in any system, despite of
how accurate load forecasting tools may be.

Contingencies belonging to the range presentedlunm two are used to design each one of

the models. Column three presents the confiderteevals calculated for each model using the
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training set. Column four contains the size of taaset used for testing and column five

contains the accuracy of the MLRMs on the test sets

It can be observed from Table 5.4 that the ova@uracy of the models on their respective

test sets is significantly high, thereby indicatihgt most models can accurately predict VSM

and correctly incorporate the uncertainty throughfidence intervals. In case the confidence

intervals are found to significantly below 95%, malata can be generated and included in the

training set in order to improve performance. A endetailed description of this procedure can

be found in Leonardi, B. and Ajjarapu, V. (2011hcther option to improve the accuracy of the

confidence interval is to move the cases with gmaformance from the test set to the training

set, thereby allowing the model to recognize thezses with greater precision.

Table 5.4. Multilinear regression models and respeconfidence bounds for IEEE 30 bus test

system.
I ndependent test set
VSM range Confidence
Model Number of Estimated VSMs within
(MW) interval in MW
estimated VSMs confidenceinterval (%)
MLRM-1  620/496 _+38.8 1976 94.23
MLRM-2  495/372 _+36.8 258 97.7
MLRM-3  371/310 _+26.9 217 99.54
MLRM-4  309/248 _+18.7 59 100.00
MLRM-5 247/124 +19.1 73 98.7

The reduced case of the eastern interconnectiomsexd next to test the proposed

methodology. The area under study is around 27stilager than the IEEE 30 bus system and
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the MLRM derived for this case are presented inld&%. The meaning of each column is the
same as that for Table 5.4, thus being omitted fozréhe sake of simplicity.

Despite the increment in size of the studied aved; four MLRMs are necessary to handle
all LIDs and 190 contingencies considered. Simjléol what has been observed for the IEEE30
bus system, the accuracy of all four designed MLR$easonably high, varying between 94-

96%.

Table 5.5 Multilinear regression models and respeconfidence bounds for reduced case of

the Eastern Interconnection

I ndependent test set
VSM range Confidence
Model Number of Estimated VSMs within
(MW) interval in MW
estimated VSMs  confidence interval (%)
MLRM1 5425/4341 _+389 7567 95.85
MLRM2 4340/3257 _1+332 799 94.11
MLRM3 3256/2173 _1+265 119 94.96
MLRM4 2172/ 1089 _#159 70 94.29

The same design standard used in the IEEE30 busyem is adopted here. According to
the proposed procedure, the number of MLRM is detezd by how many times the data (VSM
range) needs to be split. Similarly to the previoase, the threshold considered for this system
also tries to maintain the 2 sigma confidence vralesmaller than 10% of the upper VSM.

After all MLRMs have been properly designed, vdiioia steps are taken in order to enable

these models to be used in practice.
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5.8 Validation of MLRMs
In order to verify basic statistical propertiestbé models are held, MLRM-1 is selected
from the IEEE30 test system, whereas MLRM-2 isiebk from the reduced EI. These models
will initially be tested for homoskedasticity andemuacy of quadratic fit. In the sequence,
verification of normally for the residuals and #ygtness of overall regression through hypothesis

test will be performed.

5.8.1 Homoskedasticity verification

In order to check if heteroskedasticity is presé&gure 5.7 and Figure 5.8 contain plots of
the residualsg]) versus the regressed varialge for MLRM-1 and MLRM-2, respectively. This
plot is a helpful indicator of the level of hetekedasticity that may be present in the regression

model, Kleinbaum, D. et al. (1998).
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Figure 5.7. Residual plot to verify presence ofehetkedasticity or statistical inconsistency on

the residuals — IEEE30/MLRM-1

The funneling of the residuals along the rangg @hlues in Figure 5.7 indicates that light
heteroskedasticity is likely to occur in MLRM-1.tAbugh a tenuous level of heteroskedasticity
is present, remedial actions are only necessarymiline data shows significant departure from
homoskedasticity, Kleinbaum, D. et al. (1998).

On the other hand, Figure 5.8 shows that the rakidistribution of EI/MLRM-2 is
practically homoskedastic. In case the presenchetéroskedasticity is significanBox Cox
power transformations of the dependent vari@plean be used to correct for heteroskedasticity,

Kutner, M. et al. (2004) and Box, G. E. P. and doxR. (1964).
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Figure 5.8. Residual plot to verify presence othetkedasticity or statistical inconsistency on

the residuals — EI/MLRM-2

Another important aspect of these plots is reggrdite proportionality of data distributed
above and below zero residual. This observationcates that skewness is not significantly
present in both cases, as required by the nogdél The absence of patterns (linear or
curvilinear) in the residual plot also reinforchs fact that the degree of regressors considered in
the MLRMs is appropriate. The presence of patterrtbe residuals is an indication that either

the order of the MLRM (linear or quadratic) or sedected set of regressors is inadequate.
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5.8.2 Verification of normality

After checking for the presence of heteroskedagtithe histogram of the residuals is plotted

along with the best normal fit for both MLRM-1 aiMlLLRM-2 in Figure 5.9 and Figure 5.10,

respectively.

Figure 5.9 shows that the residual distributioriofes a bell shaped curve which closely

resembles a normapdf.

151 Zero mean 7 Data
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Yy \7
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e
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0 I I I I \—’—\’1
-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1

Data

Figure 5.9. Residual histogram and best nopdéabf MLRM-1
The standard deviatiows) for the best normal distribution fit is 0.0313datne meany() is
2.9.10%, practically zero as required by equation (5.53er transforming the normalizesl to

MWs, the_®c confidence interval found for MLRM-1 was 38.8MW, as previously indicated

in Table 5.4.

Figure 5.10 shows that the histogram of the res$sdiea MLRM-2 also follows a bell shaped

curve closely resembling a normal distribution. Hast normal fit in this case is plotted along
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with the + 20 confidence interval. The tails of the normal disition fit are well behaved,

further supporting the condition that only a fewsetvations will fall out of the 2c range

shown in Figure 5.9 and Figure 5.10.

The calculated standard deviation of the residieal$/LRM-2 is 0.0385 with a mean equal

to -6.8x10", close to zero as required by equation (5.12)s Standard deviation will represent

a 2o confidence interval of 832 MW , as previously indicated in Table 5.5.
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Figure 5.10. Residual histogram and best nopdébf MLRM-2

According to Kleinbaum, D. et al. (1998), only extre departures from normality would

cause spurious results of the models. Moreoverhyipothesis tests used to validate the model

are robust in the sense that only extreme devigfimm normality would cause spurious results.

This assumption is based on theoretical and expatahresults as pointed out in Kleinbaum, D.

et al. (1998).
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Therefore, it can be assumed that the tested MLBdsply with the minimal requirements

of homoskedasticity and normality.
5.8.3 Test of overall regression aptness

After testing the residuals of the MLRMs for theegence of heteroskedasticity, a final
hypothesis of overall regression is performed tidase the model. Since only 5 machines are
available to design MLRM-1, the total number of regors is 20, representing 5 linear, 10
crossed and 5 quadratic terms as defined in (31g.F statistic obtained from the ANOVA
table for MLRM-1 is equal to 6740.3.

After calculating the critical value of the F dibtition for k=20 (number of regressors),
n=2000 (number of samples used to generate the In@miea significance level=5% (
Fk,n— klla ), the hypothesis test is performed as shown iagou (5.19).

MSR

statistic:IVI—SE= 6740.3> I:20,1979,0.95= 1.57 (5.19)

Therefore, since the F statistic is larger thandtitgcal value of the F distribution as shown
in equation (5.19) above, the null hypothesis jeated and the coefficients are considered to
explain the model satisfactorily.

Once the model for the IEEE30 bus case has bedtated, we turn our attention to the
second model. Since this system is significanttgda than the IEEE30 bus test system, more
RPRs are available for MLRM development and thuly ¢éime most effective reserves can be
selected. Following the steps proposed in the flasicon Figure 5.3, nine machines have been
selected out of a total of 46. The pre-selectiorR&fRs removes those reserves that do not

significantly vary during the VSA, or quickly exhstitheir reactive support capability, hence not
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being able to provide useful information about V&Msystem load increases. Another criterion
for RPR selection is to select those machines whaoke a better individual relationship with
VSM. The quality of the relationship can be meadwéh simple statistical parameters, such as
the coefficient of multiple determination{Rand size of residual variance.

A total of 54 regressors compose MLRM-2, represgnthe 9 linear terms of each RPR, 36
crossed and 9 squared RPRs terms, as describ&dl)n The hypothesis test carried out with
k=90 (number of regressorsin=2000 (number of samples used to design the model) for a
significance level ofa=5%. The F statistic of MLRM-3 obtained from the ANOVA table is
equal to 2763.1. The hypothesis test is formallygueed as indicated in equation (5.20).

_ MSR

statistic—m=2763-]> Fs41046,0.05 1.34¢ (5.20)

Therefore, it can be concluded from (5.18), (5.489 (5.20) that the hypothesis test rejects
the null hypothesisHp) and the alternative hypothesls,) is accepted. These results reinforce
the assumption that the dependent variaplas( effectively explained by the regressaxg i(n
both MLRM-1 and MLRM-2.

After validation steps have been taken and basitis§tal properties have been met, the

MLRMs are ready to be used in online VSM estimation

5.9 Conclusions
The results have demonstrated how multilinear s=jpa models can be used to estimate
VSM in real time based on the amount of RPR. A smamnber of MLRMs is necessary even
for practical real-sized systems. The additionaifience interval to the estimated VSM value
can help operators to account for uncertainty weol with changes in LID and network

topology. However, since more than one MLRM is klde, a tool needs to be developed in
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order to help system operators to identify the adé® model based on current system

conditions.
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CHAPTER 6. MACHINE LEARNING TECHNIQUES FOR

MULTICLASS CLASSIFICATION

This chapter introduces the basis of data miningl amachine learning techniques
investigated in this research. Initially, a briefplanation of the mathematical aspects of each
technique is given. Simulations results providedhie next chapter are used to demonstrate the

effectiveness of each technique when applied t@tbelem of MLRM identification.

6.1 Data mining overview

Data mining is usually defined as the process etaliering and extracting patterns and
knowledge from data. The wordata can have broad meaning and will be defined as any
measurement, variable or information available frtme power system. Several successful
applications of data mining have been documented wide range of fields ranging from
profiling practices (for market strategies) to stiic discovery in various areas of knowledge,
Frank, I. and Witten, E. (1999).

The process of mining data begins once a databasiicing samples that represent a
process is made available for mining. It basicalnsists in learning and extracting patterns
from data in order to be able make non-trivial j#ons on unforeseen instances. This process
of knowledge extraction is commonly accomplishedriachine learning techniques.

Machine learning algorithms represent the practgadlications of rules and mathematical
methods used to obtain knowledge from a databasehi$ study, four machine learning
techniques have been investigated in order to sohee practical problem of MLRM
identification. Despite the fact that each approhah its own advantages and disadvantages, a

detailed analysis of the results will help us talgpe and identify which technique is more
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appropriate for the problem at hand. The investidachniques are artificial neural ANNs, DTs,

SVMs and KNNs. An introduction to each one of tlgpathms is presented next.

6.2 Investigated algorithms

6.2.1 Decision trees

Decision tree is a powerful machine learning teghaicommonly employed in classification
and regression tasks. It has been applied to diffeareas of power systems as described by
Diao, R. et al. (2009), Goubin, M. (1996). Van s T. et al. (1993) have used decision tress
to perform a voltage security assessment of thé wriidentify potential voltage violations.
Morison, K. et al. (2008) used decision trees ideorto identify voltage control areas based on
current system operating conditions.

Figure 6.1 shows a pictorial representation of @sien tree branch applied to the problem at
hand. Two different types of attributes are usethis case: line active power flow (Line_i) and
bus voltage magnitude (Bus_i). The first node ef tifee is usually known as theot nodeand
nodes originated from the root node are referrechdd nodesor splitting hodes The nodes in
the extremities of the tree are usually knowness$ nodesor terminal nodesand contain the
class attribute, which is in this case represei.BRM. In the example below, the root node is
not shown since the branch is only a partial repregtion of the tree.

As large power systems are composed of thousandariables, one of the objectives of this
research is to identify the most effective varialded use them to develop the MLRM-IDtool.

Although several variables are made available ¢odicision tree algorithm, only a few of

them are selected to be a part of the tree. Theetsmh process is done based on the amount of
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information gain that each attribute provides. Attributes with Rghnformation gain are

selected to be a part of the tree.

*

*
*

.

== 3.436 =3.436

Attribute
Active power flows
sphttmg node

= 41 78 =4178 Attribute 704 =70 4

o _ * -

==-181 =- 181 ==1.025 =1, 025

-

== 295 =- 295 €—1024 >1024

R - - - -

Bus voltage
mag:mtude 5

Figure 6.1. Partial representation of decision neeh

Once the DT is constructed, the classification mofirsstance begins at the root, which will
further activate one of its branches based on hittiisg decision. In the sequel, the instance to
be classified is passed onto a child node. Theggfollows until the instance reaches one of
the leaf nodes and is properly classified.

In order to reduce the size and complexity of tlee,ta mechanism known as pruning is
commonly employed. The major objectives to prunieea are to reduce the complexity and
create a tree that can offer better generalizalworeover, smaller trees are easier to handle and

to analyze. In addition to that, smaller trees ligueave better predictive accuracy since they do
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not overfit the training data set, thereby showing enhancednp@ance on unforeseen instances,

Frank, I. and Witten, E. (1999).

6.2.1.1 DT algorithms

Various algorithms have been proposed to indudtsaectrees up to date, Morgan, J.N. and
Sonquist, J.A. (1963), Breiman, L. et al. (1984 @uinlan, J.R. (1986). However, two of
algorithms have received great attention in the mmeclearning society and practitioners for
having robust performance and demonstrated scé§al@iART and C4.5.

The classification and regression trees (CART) rdlgm proposed by Breiman, L. et al.
(1984) is a decision tree building technique pregos the 80’s. It can produce either a
classification or a regression tree, depending dwether the class attribute is nominal or
numeric, respectively. The tree is formed by aemibn of rules based on values of certain
variables in the modeling data set and it take$ b@minal and numeric attributes as inputs
during its construction.

The C4.5 algorithm developed by Ross Quinlan ananigxtension of Quinlan's previous
ID3 algorithm, whose development dates back tdate70’s. Thalivide and conqueapproach
represents the core of the ID3 algorithm. Althoulgé ID3 algorithm works well, it can only
consider nominal attributes during the developmehtthe tree, hence not being able to
incorporate most SCADA/EMS numeric attributes afa# in this project. Therefore, the
evolved version of the ID3 algorithm (the C4.5uged since it can handle numeric attributes.

However, differently from CART, the C4.5 is onlypale of creating decision trees for

classification purposes, also using both numedod nominal attributes as inputs.
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Although both CART and C4.5 have been successfallyployed in power system
applications showing similar performances, the Giddorithm has been selected to be used in
this project. Two main reasons led us to make &ubectowards C4.5.

Firstly, the problem at hand (identification of WMLRM to use) is a classical classification
problem, where the class attribute (output of tte®)t is nominal and represents a MLRM.
Secondly, the algorithm is already implemented Aad been made available at no cost in
WEKA. The WEKA program is an open source machinerimg software developed and
maintained by the University of Waikato, New ZeaaHall, M. et al. (2009).

Another reason that supported our decision to sdlee C4.5 algorithm has been its
successful employment in the Powertech CaWsltage Control AregVCA) software, hence
demonstrating the necessary scalability and rolkastmequired by large scale power system

applications, Morison, K. et al. (2008).

6.2.1.2 Discretization of numeric attributes

In order to make use of numeric attributes in tiee touilding process, the C4.5 algorithm
uses a method called attribute discretization dosform numeric attributes into nominal ones.
The idea is simple: to separate the numericabatis into in binary intervals in order to attain
the highest purity level, i.e., to represent omg)lgl class on each interval.

Several methods to discretize attributes are ddailan the literature. Nonetheless, in the
discretization process, decision tree algorithmsallg use the same entropy-based method to
identify which attribute to use, Frank, I. and Witt E. (1999).

A practical discretization of an attribute is preteel next in order to illustrate the
methodology. The attribute line active power flovegented in Figure 6.1 will be discretized

using the concept of information value describext.ne

www.manaraa.com



80

Frequently, the dividing thresholds (representenfr(A) to (H) in this case) are placed
halfway between the values that delimit the bouledanf the attribute. However, enhancement

in classification performance might be gained bgmohg a more sophisticated method.

Table 6.1. Discretization of a numeric attribute

Line active
power flow 64 65 68 69 70 71 72 75 80 81 83 85
(MW)

M1 | M1
Class ML | M2| ML M1 M1| M2 M2 | M1 M1 | M2
M2 | M1
(A)  (B) © o & B © (H)

Considering the example shown in Figure 6.1, theeeonly eleven possible positions for the
breakpoint (or eight if the breakpoint is not alEnvto separate items of the same class (for
instance, M1-M1 or M2-M2). The information gain @alted for each breakpoint is shown in

(6.1).

(A) info ([L, 0],[8,5]) = —(1/14)- ([L/1 log(1/ L)} [0/ log(0 /L)L
—(13/14)-([8/13- log(8/13)}+ [5/13 log(5/13))F 0.83sts

(B) info([1, 1],[8, 4])= 0.93its

(C) info([4,1],[5, 4])= 0.89%its

(D) info([4, 2], [5, 3])=0.93%its (6.1)
(E) info([5, 3], [4, 2])= 0.93%its

(F) info([7, 3],[2, 2])= 0.91%its

(G) info([7, 4],[2,1])= 0.93%its

(H) info ([9, 4],[0, 1])= 0.82bits

The breakpoints with lowest information are usuldlsated at the extremities of the interval.

In this example, the break point located at 84MWfd([9, 4],[0,1])= 0.82Dbits) has the lowest
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information value (hence the highest informatiompand should be the one used to break the
attribute into two ranges.

Ideally, each range should be pure after separatiowever, in case both classes are present
in a range, the majority class will be used to eiee the classification of further instances. In
the previous example, the breakpoint of the atteilhme active power flow is selected as shown

in Figure 6.2.

Line active
power flow

Figure 6.2. Attribute line active power flow aftdiscretization
This process is repeated until all numeric attebuhave been discretized and the tree
completely developed. Once the tree is validatechn then be used in real time operations for

online MLRM identification.
6.2.2 Atrtificial Neural Networks (ANN)

ANNs have emerged in the late 80’s as a practezdiriology with successful applications in
many fields. Although several different topologe#sANNs have been proposed in the literature,
the multilayer perceptron network and radial bdsisction network have demonstrated great
success in pattern recognition and classificatimblems Bishop, C. M., (1995). In this work,

we have only considered multilayer perceptron ANM its widely known capabilities and
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demonstrated performance on classification problemMesreover, computationally efficient
methods to train this type of ANN such as the bpabpagation algorithm are available and
widely employed in practical designs.

A typical multilayered feed forward ANN is shown iRigure 6.3. Throughout this
dissertation, the ANNs utilized will be formed bf¢e layers unless stated otherwise. The layers
that compose an ANN are: the input layer, the mddger (also called intermediate layer) and
the output layer. Except for the input and outpyels, an ANN can have as many hidden layers
as necessary. Each layer has a certain numbemuodnge which are interconnected through the

links as shown in the picture below.

Input Hidden Layer Output

Input #1
Input #2
Input #3

Input #r

Figure 6.3. Artificial neural network structure

Data is initially supplied to the input layer saén propagate through the network. After the

inputs are provided, sequential multiplication I tweigh factors and addition to the local
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neuron biases occurs as the impulse signal mooeag dhe intermediary layers. In the end, all
signals are added up to produce the output valumaghematical representation of the ANN

utilized in this work is give in Figure 6.4.

Figure 6.4. Mathematical representation of an ANN

Data is presented at the input layer in the forma @kctorx =[x xL x]. Each dimension

is then multiplied by weighting factoss; and summed up with a bias factgs as shown in

equation (6.2).

3 :i"‘f?)ﬁ“"ﬁ’ 6.2)
i=1
The quantities; are known asictivationsand are obtained by the product of the input \salue
by the weighting factor, added with the bias fac€@nce the activation value is obtained, it will
be transformed using a nonlinear activation fumctid.). Common examples of activation
functions include the sigmoid and hyperbolic tarigemctions, Bishop, C. M. (1995). The

activation value; is transformed into the valugas shown in (6.5).
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Z, :h(aj) (6.3)
In this work, a hyperbolic tangent function is usedlthe activation function in the hidden

layer and a linear function is used in the outmytet. The hyperbolic tangent function is

described in equation (6.4).

2a

e -1
e +1

h(q) = (6.4)
After vector the hidden layer outputgsare generated, they are multiplied by the weighing
factors linking the hidden layer to the output lage shown in Figure 6.4. The output activation

termscy are then formed as shown in equation (6.5).

G = Wi 7+ wp) (6.5)
j=1
Finally, the output termgy are generated by transforming the activation valuesing

another hyperbolic tangent sigmoid functioras described in equation (6.6).

Y =0(G) (6.6)

The final formulation representing the multilayengeirceptron ANN model is described in

equation (6.7).

4w = 3w
j=1

d
5w o w2 ©7

Once the ANN model is defined, the network is tedimising the back propagation algorithm
where the deviations from the target outputs aegl s adjust the weightg® andwy® in the

network. The back propagation algorithm is repeateiil the mean square error falls below a

certain threshold or the maximum number of trairepgchs is realized.
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6.2.3 Instance based learning and K-Nearest-Neighbor (KNN

The nearest neighbor method is one of the mostlsiam yet widely used machine learning
techniques. More popularity has been gained dfiemtork developed by Aha, D et al. (1991)
and Aha, D. (1992), where it has been shown thatrémoval of noisy attributes and the
weighting of selected attributes could make the K&figroach perform better than other popular
machine learning techniques.

The technique explores the concept of memorizatome of the simplest and yet most
powerful forms of learning. Similarly to what hamgan the human brain, machines can also use
the concept of memory to classify objects. Basycalhce a set of instances (samples) has been
memorized, the classification of a new instance banachieved by matching the closest
instance/s in the database.

This type of learning is namadstance based learningnd K nearest neighborgKNN)
stands as one of the most popular instance baseding techniques. The most notable
difference between this type of techniques andratltessification approaches is the instant at
which learning takes place.

Contrary to decision trees and other classificaiethods, where a model (tree, ANN or
SVs) is obtained (learned) from the training sesasn as the set is made available, instance
based learners only learn when they are requireleh tmther words, learning only occurs when a
new instance is presented for classification.

Due to this characteristic, instance based leafilerdhe K nearest neighbors are also know
aslazy methodsWhile other approaches produce a generalized hbhaded on the training data
that is made available, instance based learnees thef real work as long as possible. Figure 6.5

pictorially explains the different approaches @by both techniques.
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For instance, in the decision tree algorithm, @& ti® developed based on information
(attributes and instances) contained in the trgidiatabase. After designed, the model (decision
tree) is used to classify new instances that aesgmted to it. Therefore, there is no learning at

the time which the instance is presented for diassion.

New
Instance

l

z
Y <
Learning ‘
4
New hﬂ A
Instance —> _7_ : DE

Figure 6.5. Comparison of learning approaches

On the other hand, a K nearest neighbor classifigr classifies a new instance is when it is
presented for classification. After the new inseaicmade available, the KNN method compares
it with the K closest instances on its database. dlbsest neighbors are identified by measuring
the distance between the new instance and allsafigighbors. After the K nearest neighbors
have been identified, a simple count of their @assan determine the most frequent class, which

will in turn be assigned to the new instance.
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Conceptually, the KNN approach is quite simpldrigs to classify the new instance based
on its nearest neighbors. In order to identify tlearest neighbors, the concept of distance must

be properly understood. Consider two vectoes[x, x,,L , %] andy=[y, y,,L ,y,]belonging

to a vector space of dimension n (for instaR®@, Several definitions of distance commonly

employed by the KNN method are presented in Talde 6

Table 6.2. Distances commonly used in the KNN aggino

Distance Formula
Euclidean n
2
D(X,Y) =2 (%~ %)
i=1
Manhattan

D(x.y) =} - ¥

Chebyshev D(x,y) = max|x — y|

Although various distances are available, the stah&uclidean distance is most frequently
used in the literature and is thus employed in pinegect. An analysis of the impact of different
distances on KNN performance can be made in oméeintd the best one for the current
application.

A pictorial description of how the KNN approach Wserin practice is given in Figure 6.6.
Attempting to classify the new instance (represgrig ?), the KNN algorithm calculates the

distance of the K nearest neighbors.
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Figure 6.6. The K-nearest neighbor approach

The number of neighbors (K) can vary from caseasecand must be selected based on a
tradeoff between performance and computational.tfroe the application herein developed, K
is set to 3 after good results have been obtained.

Assuming that K=3 for the classification case showirigure 6.6, there is a total of two
squares and one triangle neighbors around the meanice (?). Therefore, since the majority of

neighbors are “squares”, the new instance is ¢ledsas a “square”.

6.2.3.1 Processing speed and storage requirements

The KNN method tends to be slow in very large dmtses since the distances between the
new instance and all instances in the data base toeke calculated. However, in case only a
single instance is presented for classificatiohdatances can be calculated quickly even on
regular desktop computers. Since the applicatioreldped here only requires the identification
of a single operating condition at the time, clisaiion speed does not adversely affect the

performance of the approach.
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Another common drawback of the KNN approach meetiom the literature is related to
large amounts of storage requirements. Althougrageocapacity might have been a problem at
the time when the technique was developed (and ievidre early 90’s), current computational
advancements have lifted this limitation. For ins® the problem addressed in this project
contains thousands of attributes and tens of thlssaf instances. Nonetheless, no special
storage has been necessary and all simulationpeafermed on a desktop computer with a
Pentiunf 2.6 GHz processor, 1 GB of RAM and an 80GB harigtedra relatively modest

configuration compared to currently available texbgy.
6.2.4 Support vector machines

Support vector machine is a powerful supervisedsii@ation technique initially proposed
by Cortes, C. and Vapnik, V. (1995). The idea isdohon the identification of the best hyper

plane used which separates two different classlesitification of the best hyperplane involves

the maximization of the marginﬁz—|| ) between the two support hyper planes. Figureslboivs
W

the support vectors that are used to create th@osulpyper planes.
A quadratic optimization problem is formulated demtify the plane coefficients (denoted by
w). The addition of slack variablégis needed when the datasets are not completetyaddp,

i.e., when the instances cannot be completely asgghrby the hyper plane. The objective

function will thus be formed by the margin term pla penalty function in the fortmz &
i=1

which can measure “how bad” the misclassificatiares Penalty functions in this form have the

advantage of maintaining the optimization problenadyatic and convex. Therefore, the final
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optimization used to determine the coefficient gewt problem can be formulated as shown in

equation (6.8).

Figure 6.7. Support vector machine concept

Min 2P +C>
2 =i

st (6.8)
Y (W'x, —b)-1+£ >0, Vi
&20 , Vi

The corresponding Lagrangian function is represemequation (6.3).

L(w,b,f,/l,y)=%||w||2+Can:§i —gﬂ, (y(w'x —b-1+& > 0)—2::;45 (6.9)
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The constanC represents the cost of each slack variables an input vector witly; being
the class it belongs to 1y; w is the weight factor vectob is the plane coefficient; andy; are
the Lagrangian coefficients for the inequality dosists. Solution of the quadratic optimization
problem (6.8) will identify the coefficients for éhhyperplane that maximizes margin. A more
detailed description of SVMs and their applicatidosclassification problems can be found at
Bishop, C. M. (2006).

Once the investigated machine learning techniqgags been introduced, we shall focus our
attention on how we can use them to perform makglclassification. A detailed description of

the most common multiclass classification methsdgven next.

6.3 Multiclass classification problem

Multiclass classification problems arise frequentlyvarious situations of daily life. For
instance: assume that a professor wants to ramlerstsl grades (from A to E) based on their
exam scores, homework scores and class partiapddioce he determines his rules, the students
are classified into 5 different groups based orr tegam scores, homework scores and class
participation. The set of rules imposed by the ggebr are equivalent to the classification tool
used to classify the students.

Differently from binary classification, where ontwo classes are present (in the above
example, five classes are available: A, B, C, D &)xdmulticlass problems involve several
classes and are usually harder to solve than baiasgification problems.

The complexity of the classification techniques tyed will depend on the degree of
difficulty to distinguish among the classes. Irifiathe simplest approaches are used to address
the classification problem. In case poor clasdifice performance is obtained, more complex

approaches are utilized in order to improve clasgibn precision.
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Several approaches have been proposed in thediter® address these kinds of problems,
with the most popular being the extension of binelgssification algorithms tenulticlass
classification thebinary decompositionf the multiclass classification problanto several two
class problems artderarchical classificatiormethods.

The multiclass classificatiorapproach uses one classifier to classify all theses at the
same time. This approach can only be used if thssiflcation technique can be modified to
handle multiple classes in its formulation (e.gT,sSDANNs and KNN). Some powerful binary
classification techniques (e.g., support vectorshmes) are not commonly employed since their
extensions to multiclass problems are still at setging stage, Furnkranz, J. (2007) and
Bishop, C. M. (2006). The main advantage of thipraach relies on the fact that a single
classifier is needed to classify all classes presenhe problem. However, it is common to
observe a lower classification precision when camgato the other two classification
approaches for problems where the classes areuliffo separate.

The so-calledbinarization methodsdivide a multiclasslassification problem into several
binary ones. Thene versus al(OVA) approach trains a classifier using one o ttlasses
against all the other classes at the time. Foamnts, if n classes are present, the OVA approach
will require a total of n classifiers to performetklassification. The fact that the OVA method
has shown superior performance compared to thdesimglticlass technique has made the
approach one of the most popular for multiclasssifecation, Firnkranz, J. (2007).

Theone versus on@VO) approach trains a classifier to distinguastiass from every other
class. If n classes are present, a total of n*(®-&lassifiers are needed. This approach usually
performs better than the multiclass and the OVAr@@ghes mentioned above. A voting scheme

using the output of each binary classifier combiattsoutputs of the classifiers into a final
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classification result. The major drawback of the @¥trategy is the fact that the number of
classifiers grows quadratically with the number désses, hence making the approach
cumbersome in case many classes are present. Ariglicrepresentation of the three

aforementioned classification methods is givenigufe 6.8.

Multiclass approach- One vs. All approach - One vs. One approach -
One single classifier to classify all n classes n classifiers to classify all n classes n(n-1)/2 classifiers to classify all n classes

Figure 6.8. Different multiclass classification imeds

While the approaches mentioned above are more commdthe literature, a hierarchical
classification method has shown very good perfosaaon multiclass classification problems
Ananda, R. et al. (1995). The main advantage oh shierarchical classification approach
compared to the OVA and OVO approaches is thatag reduce the total number of classifiers
needed for classification.

The hierarchical classification scheme investigateithis works is schematically represented
in Figure 6.9. The figure shows that classes C1G@hdre classified with high precision by the
first classifier, whereas class C2 is accuratehgsified by the second classifier and classes C3
and C4 are passed to the third classification stélgerefore, only three classifiers are necessary
in order to distinguish among all classes with Ipgécision. The modification of the hierarchical

classification methods relies on the fact that ntbam one class can be successfully identified at
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each classification stage, thereby reducing thehaurof classifiers needed. Such reduction is
only possible because the algorithms used at dage @re capable of performing multiclass
classification.

Each block in Figure 6.9 contains a classifier whoan be a DT, an ANN, a KNN or a
combination of them. The combination of differetdssification methods in order to improve
accuracy is also known as stacking, Frank, I. anteW E. (1999). Only MLRMs with
classification precision lower than the threshatel @assed on to the next classification stages. A

precision and a recall threshold of 90% have beasidered in this work.

MLRM — IDtool

DT-3/KNN-3
|
[ ] [ ] [ ] ]
MLR-1 MLRM-5 | MLRI-2 MLRM-3 | | MLRM-4

DT-2/KNN-2

DT-1/KNN-1

from SCADA measurements

Figure 6.9. Hierarchical structure of the MLRM-IBto

The variables passed to the classifiers represamral power system attributes (SCADA
measurements shown in Table 4.1 along with clasbaes (MLRMs). The MLRMs are then
classified and the models with high classificatmecision (and low recall) are removed from
the process, leaving only models with low clasatiien precision to be classified in the next
stages.

Two major aspects have been considered while s®hetechniques to be used in the

hierarchical classifier: complexity of the methaadaoverall classification performance of the
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tool. Ideally, the simplest machine learning metheould be used and high classification
performance would be achieved. However, that istnetcase most of the time and complex
classification schemes may be necessary.

We have observed that DTs, ANNs and KNNs are sinfptepractical implementations and
need less training time compared to SVMs. It haanbabserved that they are able to provide
reasonable classification performance within a basalount of training time. Moreover, since
they are able to perform multiclass classificatithey contribute to a reduction in the number of
classifiers needed inside the MLRM-IDtool. The S\WWthod cannot be considered under this
topology as it cannot perform multiclass classtfara at each stage, thereby requiring a large
number of classifiers and reducing classificatierfgrmance.

After talking with utility partner, we have noticedhigher interest in the use of decision trees
as the classifier. The reason is that it can pewdsy to understand and meaningful visual
information to system operators. Therefore, amgitevill be made in order to assemble DTs in
several different classification schemes in ordentprove classification performance.

A description of how the method can be appliedh® MLRM identification problem is
given next. Let us assume that current system tipgraondition is made available to the
MLRM-IDtool. The information is passed onto theraiehical classification system for MLRM
identification and classification is done sequdiytian each classifier. If one of the classes is
properly classified with precision/recall higheath90%, that class (MLRM) is then excluded
from the next classification step and the processticues with the remaining imprecisely
classified MLRMs.

However, it is important to remember that the ordeclassification in Figure 6.9 is not

necessarily the same for each studied system amatioas on the number of classification
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stages may occur. The structure presented abovelasve to the implementation of the
methodology on the IEEE30 bus test system, LeonBrdind Ajjarapu, V. (2010).

Although the scheme presented above representgeatigb architecture for the MLRM-
IDtool, the final complexity of the tool will depdnon the difficulty to classify the MLRMs.
Therefore, practical implementation on large neksomay have higher or lower complexity
than the method presented in Figure 6.9.

All multiclass classification methods are then camsol to a standard boosting algorithm
called AdaBoost, Freund, Y. and Schapire, R. E 71 9Results will show that although all
techniques work well at the problem, some of theay @nhance classification precision with a
smaller number of classifiers. Simulation resuftthe hierarchical method have been reported in

the next chapter and in Leonardi, B and Ajjarapu(2011).
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CHAPTER 7. SIMULATION RESULTS FOR THE MLRM-IDTOOL

This chapter contains tests of the MLRM-IDtool tve tEEE30 bus test system and on the
reduced case of the eastern interconnection ofUthiged States. All four machine learning
techniques described above are tested and inviestiga detailed description of the results is

given next.

7.1 Results on the IEEE-30 bus test system
This test system is formed by considering a tofab® contingencies including NERC
category B, C and D along with 15 LIDs for trainiaigd 5 LIDs for testing, totaling 750 training
scenarios and 250 testing scenarios, respectiddherent multiclass classification processes are
investigated as proposed. The results and perfarenaheach machine learning techniques is

presented next.

7.1.1 Decision tree based classifiers

7.1.1.1 SinglemulticlassDT

As previously mentioned, every machine learninghteue will be investigated under
different topologies for multiclass classificatiofhe simplest multiclass classification method
considering a DT is by extending the algorithm émdile multiple classes. Table 7.1 shows the
classification accuracy of a single DT.

It can be observed that MLRM-1, MLRM-4 and MLRM-&ue good classification precision,
although MLRM-4 has a high recall rate. MLRM-2 aMLRM-3 have low classification

precision and indicated that a more complex clesdibn system might be necessary.
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Table 7.1. Confusion matrix of DT

Outputs
MLRM-1 MLRM-2 MLRM-3 MLRM-4 MLRM-5 pre'gg'i"o'g‘zﬁ: %) prec?s‘i’g;a('i'n %)
MLRM-1 | 1363 32 2 0 0 94.6 84.2
5 MLRM-2 78 1456 24 0 0 71.9
S MLRM-3 0 536 895 73 0 65.4
F MLRM-4 0 0 448 1108 0 93.8
MLRM-5 0 0 0 0 1543 100.0

7.1.1.2 DT-based hierarchical classifier

In order to improve classification precision of pgoclassified models, a DT-based
hierarchical classifier is proposed. The threshodtsidered to remove a MLRM from the
classification process is a precision and recallval®0%. According to this criterion, three DTs
are found to be necessary in order to achieve eéseatl classification accuracy. DT-1 is used in

the first stage and its confusion matrix is showiable 7.2 below.

Table 7.2. Confusion matrix of DT 1

Outputs
MLRM-1 MLRM-2 MLRM-3 MLRM-4 MLRM-5 prégi'i"o'g“(ﬁ: %) precci)s‘i’g;a('i'n %)
MLRM-1 | 1363 32 2 0 0 94.6 84.2
5 MLRM-2 | 78 1456 24 0 0 71.9
S MLRM-3 0 536 895 73 0 65.4
F MLRM-4 0 0 448 1108 0 93.8
MLRM-5 0 0 0 0 1543 100.0

MLRM-1 and MLRM-5 have precision and recall highban 90% and are thus removed
from the classification process. In the secondest&yr-2 removes MLRM-2 as it meets the
requirements and DT-3 finally distinguishes betwb#rRM-3 and MLRM-4 as shown in Table

7.3 and Table 7.4, respectively.
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The final classification precision of each MLRM Wdlepend not only of their classification

precision at the stage where they are classifiedalso their rejection precision in the previous

stages.

Table 7.3. Confusion matrix of DT-2

Outputs
MLRM-2 MLRM-3 MLRM-4 Individual Overall
precision (in %) precision (in %)
= MLRM-2 473 21 0 93.3 84.4
% MLRM-3 34 503 36 74.1
' MLRM-4 0 155 358 90.9
Table 7.4. Confusion matrix of DT-3
Output
Individual Overall
MLRM-3 MLRM-4 precision (in %) precision (in %)
S MLRM-3 | 308 14 82.8 85.9
,‘_‘5 MLRM-4 64 169 92.3

The final classification accuracy for the hieracethiDT-based classifier is given in

Table 7.5 below. It can be seen that the classidicaprecision of some MLRMs have

increased significantly, whereas others have eit@ntained the same classification accuracy

or slightly reduced.
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Table 7.5. Final classification precision of the Based hierarchical classifier

Final classification precision (in %)

MLRM-1 94.6
MLRM-2 92.6
MLRM-3 80.5
MLRM-4 89.8
MLRM-5 100.0

Overall, the gains in classification precision areaningful and the hierarchical method is

successful in increasing classification precision.

7.1.1.3 OVA DT based classifier

In order to assess other classification methods d¢bald provide enhanced classification
precision, a one versus all DT based classifienvsstigated. A total of five DTs are used in
order to train each class against all the othessela. The classification precision of each one of

the MLRMSs, as well as the overall classificatioegsion, is given in Table 7.6.

Table 7.6. Confusion matrix of OVA DT-based classif

Outputs
MLRM-1 MLRM-2 MLRM-3 MLRM-4 MLRM-5 Pre";fjs'l‘g?“’(?r'] %) prec(i)s‘i’g;a('i'n %)
MLRM-1 | 1270 60 67 0 0 92.4 77.6
< MLRM-2 | 105 1281 172 0 0 66.8
S MLRM-3 0 578 790 136 0 50.1
= MLRM-4 0 0 548 985 23 87.9
MLRM-5 0 0 0 0 1543 98.5

As can be noticed from the table above, the claasibn accuracy of individual MLRMs has

not improved with the increased number of classifias compared with the single and
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hierarchical DT classifiers. Therefore, we can tode that the OVA approach is not useful to

enhance classification precision when DTs are asdlie core classification techniques.

7.1.1.4 OVO DT based classifier

Another possible approach is to implement the OVa&3sification approach using DTs as
classifiers. The approach requires a total of t&s Bince five MLRMs are to be classified. The

results of the OVO DT based classifier are showhahble 7.7.

Table 7.7. Confusion matrix of OVO DT-based classif

Outputs
MLRM-1 MLRM-2 MLRM-3 MLRM-4 MLRM-5 Individual Overall
precision (in %) precision (in %)

MLRM-1 1306 91 0 0 0 75.7 79.3
g MLRM-2 216 1334 8 0 0 66.6
% MLRM-3 59 577 802 66 0 66.6
F  MLRM-4 144 0 405 1007 0 93.8
MLRM-5 0 0 0 0 1543 100.0

The classification accuracy of some MLRMs has imptbfrom the case whereas others
have reduced. Overall, the classification precigiaa been reduced from the case where only a
single DT is used for classification. Thereforecah be concluded that neither the OVO nor the

OVA DT based classifiers have shown improvementdassification precision.

7.1.1.5 AdaBoost usng DT asclassifier

In order to boost performance on poorly classifiestances, the AdaBoost algorithm is
investigate in this study. The method was propdseBreund, Y. and Schapire, R. E (1997) and
has the objective of improving classification insea where the classifier shows poor

classification precision. The results for the AdaBiclassifier are presented in Table 7.8.
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Table 7.8. Confusion matrix of DT-based AdaBooassifier

Output
MLRM-1 MLRM-2 MLRM-3 MLRM-4 MLRM-5 Individual Overall
precision (in %) precision (in %)

MLRM-1 | 1363 32 2 0 0 94.6 84.2
% MLRM-2 78 1456 24 0 0 71.9
S MLRM-3 0 536 895 73 0 65.4
F  MLRM-4 0 0 448 1108 0 93.8
MLRM-5 0 0 0 0 1543 100.0

The classifier does not show a very significant noement classification precision when
compared to the single DT-classifier. Under theseumstances, we have concluded that the
hierarchical classifier has shown the best clasgifin precision among all the investigated

techniques and hence should be used for pracpgdications.

7.1.2 Atrtificial Neural Network based classifiers

7.1.2.1 Single multiclass ANN

The simplest way to apply ANNs to the problem ahdcas by generalizing the binary
classification algorithm to the multiclass case.this study, the considered ANNs structure
considered in this work has 5 output layers, 3@émlayers and 230 attributes in the input layer.
In order to perform online MLRM identification, @dCADA variables of interest are presented
to the inputs of the ANN and the selected MLRMrigduced in the output.

Since the MLRMs represent nominal classes, theyt ineigepresented numerically so that
the ANN can process them. Therefore, the outpwisabeed to be numerically coded so that the
ANN can distinguish among them during the trairstege. Table 7.9 shows how each MLRM is

represented in the output of the ANN.
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Model Code word
MLRM-1 10000
MLRM-2 01000
MLRM-3 00100
MLRM-4 00010
MLRM-5 00001

Basically, the presence of a “1” in one of the otitpeurons and “0” in all the other outputs

will indicate which MLRM is identified. For instarc MLRM-1 is identified when the ANN

produces a “1” on its first output and “0” in alther outputs. After modeling the MLRM

accordingly, the ANN training process considerirgiraple multiclass ANN can begin.

Table 7.10 shows the classification performancensesingle multiclass ANN is used to

differentiate among the five MLRMs present in tbase.

Table 7.10. Confusion matrix of single ANN classifi

Outputs

MLRM-1 MLRM-2 MLRM-3 MLRM-4 MLRM-5

Individual

Overall

precision (in %) precision (in %)

MLRM-1 | 1325 72 0
5 MLRM-2 78 1313 167
g MLRM-3 0 289 975
F  MLRM-4 0 0 394
MLRM-5 0 0 0

0 0

0 0

236 4
1013 149
0 1543

94.4
78.4
63.5
81.1
91.0

81.6

Although the overall performance of the

(specifically MLRM-3) have low classification

identified most of the time.

network hggh (81.6%), some MLRMs

premn and therefore would be poorly

www.manaraa.com



104

7.1.2.2 ANN-based hierarchical classifier

In order to enhance the classification accuracysfume of the MLRMs, more powerful
classification schemes have been used as mentiang previous chapter. The hierarchical
classification method used here considered a sequef ANNs in order to improve
classification accuracy.

The thresholds considered to remove a MLRM fromdlassification process are precision
and recall higher than 90%. Therefore, if a MLRM laaprecision and recall higher than 90% it
is assumed to be classified with high accuracy iancemoved from the process. Table 7.11
shows that MLRM-1 and MLRM-5 have high classificatiprecision and are removed from the

next step.

Table 7.11. Confusion matrix of ANN-1

Outputs
MLRM-1 MLRM-2 MLRM-3 MLRM-4 MLRM-5 prégg'i"o'g“(ﬁ: %) prec?s‘i’g;a('i'n %)
MLRM-1 | 1325 72 0 0 0 94.4 81.6
5 MLRM-2 78 1313 167 0 0 78.4
S MLRM-3 0 289 975 236 4 63.5
= MLRM-4 0 0 394 1013 149 81.1
MLRM-5 0 0 0 0 1543 91.0

It is important to notice that despite MLRM-4 hagad classification precision, it still has a
high recall rate (around 61.9%). Therefore, ite& In the process to be classified in the next
stage.

Table 7.12 shows that MLRM-2 has good classificapoecision and is thus removed from

the process by second classifier.
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Table 7.12. Confusion matrix of ANN-2

Outputs
MLRM-2 MLRM-3 = MLRM-4 prelgiclli\/()lr(illgjrl1I %) prec(i)s\i/grrla(liln %)
= MLRM-2 445 49 0 95.7 83.3
% MLRM-3 20 553 0 69.4
= MLRM-4 0 195 318 100

Table 7.13 shows the precision of the ANN-3 wheassifying MRLM-4 and MLRM-5. It
can be observed that the classification precisiahracall rates increased significantly from the

previous classification step.

Table 7.13. Confusion matrix of ANN-3

Output
Individual Overall
MLRM-3  MLRM-4 precision (in %) precision (in %)
g MLRM-3 305 17 97.1 95.3
S MLRM-4 9 224 92.9

The final classification precision of the metho#es into account all steps involved in the

methodology and is shown in Table 7.14.

Table 7.14. Final classification precision of theM based hierarchical classifier

Final classification precision (in %)

MLRM-1 94.4
MLRM-2 94.2
MLRM-3 91.3
MLRM-4 87.4
MLRM-5 91.0

By comparing the results from Table 7.10 and Tablel, it can be noticed that there is a

significant enhancement in classification precisionase the hierarchical approach is employed.
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However, it is important to remember that three AN&fe used in the later approach in

comparison to the former case, thus increasingveeall complexity and computational effort.

7.1.2.3 OVA ANN based classifier

In order to investigate how a more complex classifwvould perform in this test case, an
OVA ANN-based classifier is designed and invesgdatThe method makes use of five ANNs
which are trained to differentiate one class frdhth& others at the time. The results obtained by

the OVA ANN-based classifier are shown in Table&7.1

Table 7.15. Confusion matrix of OVA ANN-based cléiss

Output
MLRM-1 MLRM-2 MLRM-3 MLRM-4 MLRM-5 Individual Overall
precision(in %) Precisionn (in %)

MLRM-1 1303 86 8 0 0 97.2 82.3
% MLRM-2 37 1311 210 0.00 0 74.2
S MLRM-3 0 357 1117 30 0 64.2
F  MLRM-4 0 13 405 949 189 96.9
MLRM-5 0 0 0 0 1543 89.1

It can be noticed that even though the performarfcéhe classifier is good, it cannot
overcome the hierarchical ANN classifier. Moreouis approach uses five ANNs whereas the
hierarchical method uses only three to achievedrigkrformance.

Another down side of this method is that each dnihe five classifier are trained using an
unbalanced training set. This happens because ie@dinfive classes are balanced (thus each
representing roughly 20% of the data), the classi§ trained using one class versus the other
four, thereby changing the training ratio to 20/80is may bias each individual classifier and

reduce its generalization ability.
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7.1.2.4 OVO ANN based classifier

Another possible use of ANN classifiers is the saesus one approach. In this method, one
classifier is trained to distinguish between ev&ry classes. Since there are five classes, a total

of ten classifiers will be needed. Simulation resof the method are presented in Table 7.16.

Table 7.16. Confusion matrix of OVO ANN-based citsis

Output
MLRM-1 MLRM-2 MLRM-3 MLRM-4 MLRM-5 Individual Overall
precision (in %) precision (in %)

MLRM-1 | 1355 42 0 0 0 91.9 82.1
= MLRM-2 | 120 1295 143 0 0 81.0
S MLRM-3 0 261 1224 19 0 63.1
F MLRM-4 0 0 574 793 189 97.7
MLRM-5 0 0 0 0 1543 89.1

Comparing the results obtained by the OVO and tWé @pproaches, it can be noticed that
there is not much gain in performance despite nibeease in the number of ANNs used by the
later approach.

It is also important to mention that in case seveesses (MLRMSs) are considered, the OVO
method may require a larger number of classifierbea used. Practical implementation aspects
must then be taken into account while deciding Wimethod to use. Preference will be given to

the methods that achieve highest performance adbeomplexity levels.

7.1.2.5 Adaboost using ANN as classifier

In order to compare the hierarchical classifiethvekisting standard boosting techniques, the
AdaBoost algorithm has been tested using ANNs assiflers. It is expected that by using a
meta-learner technique, the classification prenigibMLRM will increase. The algorithm uses
several classifiers which are adjusted in favorttwise instances misclassified by previous

classifiers. The results of using ANN — based AdadBanethod is shown in Table 7.17.
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As observed in the table above, the overall clessibn precision and the individual

classification precision are similar to OVA and OwWathods previously mentioned. However,

the classification precision of the AdaBoost altfuri cannot surpass the precision of the

hierarchical ANN classifier.

Table 7.17. Confusion matrix of ANN-based AdaBazlatsifier

Outputs
MLRM-1 MLRM-2 MLRM-3 MLRM-4 MLRM-5 Pre";fjs'l‘g?“’(?r'] %) prec(i)s‘i’g;a('i'n %)
MLRM-1 | 1376 21 0 0 0 87.7 80.0
5 MLRM-2 | 193 1142 223 0 0 67.2
S MLRM-3 0 536 859 109 0 57.8
F  MLRM-4 0 0 405 1125 26 91.2
MLRM-5 0 0 0 0 1543 98.3

7.1.3 KNN based classifiers

7.1.3.1 Single multiclass KNN classifier

Similarly to the ANN and DT methods proposed abowe, begin our investigation by

considering a multiclass KNN classifier that uglizthe three closest neighbors to classify all

classes simultaneously. The confusion matrix camgithe classification precision of the single

KNN classifier is shown in Table 7.18.

Table 7.18. Confusion matrix of single KNN classifi

Outputs
MLRM-1 MLRM-2 MLRM-3 MLRM-4 MLRM-5 pre'gg'i"o'g‘zﬁ: %) prec?s‘i’g;a('i'n %)
MLRM-1 | 1320 77 0 0 0 92.9 85.8
< MLRM-2 | 101 1325 132 0 0 76.4
S MLRM-3 0 332 1147 25 0 74.6
= MLRM-4 0 0 259 1155 142 97.9
MLRM-5 0 0 0 0 1543 91.6
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After comparing the results for the single KNN cléier with the single ANN and DT

classifier, we notice that the KNN method outperferboth of its competitors in overall

classification precision. Interestingly, this iseoof the simplest methods and yet most powerful

methods for multiclass classification. Howeversitmportant to remember that since there is no

model derived from the database, all samples nristdye and classification occurs only when a

new sample is submitted for classification. Duehis characteristic, the KNN classifier is also

known adazy method

Overall, all the individual classification precia® are around 75% and above, thereby

indicating that the KNN method can be successkithployed in MLRM identification.

7.1.3.2 KNN based hierarchical classifier

In order to improve classification precision, a KMidsed hierarchical is proposed in the

sequel. The classifier has a similar structurehasane presented before for the ANN and DT

based ones.

The confusion matrix for the KNN-1 is given in Tabl.19. Although MLRM-3 has a high

classification precision, its recall rate surpastes 90% value specified in this project and

therefore it is retained for a later classificatgtage.

Table 7.19. Confusion matrix of KNN-1 classifier

Outputs
MLRM-1 MLRM-2 MLRM-3 MLRM-4 MLRM-5

Individual

Overall

precision (in %) precision (in %)

MLRM-1 1320 77 0 0 0
% MLRM-2 101 1325 132 0 0
% MLRM-3 0 332 1147 25 0
F  MLRM-4 0 0 259 1155 142
MLRM-5 0 0 0 0 1543

92.9
76.4
74.6
97.9
91.6

85.8
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However, the precision of MLRM-2 in the second sifier cannot reach the minimum
precision and recall of 90% and the approach shaonilg have two classifiers. Since the MLRM-
3 and MLRM-4 are not well distinguished (look a¢ thigh recall rate in KNN-2 classifier), their
classification precision can be enhanced if a tluiaksifier is added. Therefore, KNN-3 is
created for it improves the classification perfonta of MLRM-3 and MLRM-4, although the

design requirements would not suggest its developmEne confusion matrix of KNN-2 is

shown in Table 7.20.

Table 7.20. Confusion matrix of KNN-2 classifier

Outputs
MLRM-2 MLRM-3 = MLRM-4 prelgiclli\/()lr(illgjrl1I %) prec(i)s\i/grrla(liln %)
2 MLRM-2 455 39 0 88.0 75.1
% MLRM-3 62 388 123 65.0
F  MLRM-4 0 170 343 73.6

Since the recall rate of MLRM-3 and MLRM-4 is highe inclusion of a third classification
stage may enhance individual classification prenisif those models. Therefore, a third stage is

developed and its confusion matrix is show in Tabid.

Table 7.21. Confusion matrix for the KNN-3 clasifi

Output
Individual Overall
MLRM-3 MLRM-4 precision (in %) precision (in %)
g MLRM-3 318 4 83.5 87.9
S MLRM-4 | 63 170 97.7

Once all classification stages have been identitieel final classification precision for each

MLRM can be calculated. The final classificatiore@sion of the hierarchical KNN based

classifier is shown in Table 7.22.
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Table 7.22. Final classification precision of thHK based hierarchical classifier

Final classification precision (in %)

MLRM-1 92.9
MLRM-2 86.5
MLRM-3 79.0
MLRM-4 92.5
MLRM-5 91.6

By comparing the classification precision of therhrchical KNN classifier with the single
KNN classifier, it can be noticed that the classifion precision of most MLRMs went up,

therefore indicating a better classification parfance.

7.1.3.3 OVA KNN based classifier

In order to investigate wide range potential cleess, an OVA KNN based multiclass

classifier is developed as well. The confusion maif the OVA KNN is shown in Table 7.23.

Table 7.23. Confusion matrix of OVA KNN-based cléiss

Outputs
MLRM-1 MLRM-2 MLRM-3 MLRM-4 MLRM-5 Pre"c‘?s'l‘g‘r’]“("l"r'] %) precci)s‘i’g;a('i'n %)
MLRM-1 | 1320 77 0 0 0 92.8 85.8
< MLRM-2 | 101 1325 132 0 0 76.4
S MLRM-3 0 332 1147 25 0 745
= MLRM-4 0 0 259 1155 142 97.8
MLRM-5 0 0 0 0 1543 915

Despite the fact that five classifiers are usethis case, the performance of the OVA KNN
based classifier is very close to the case wheaiagle KNN classifier is used. Therefore, there
is practically no gain in precision by using a Er@nd more complex classification scheme in

this case.
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7.1.3.4 OVO KNN based classifier

Another potential topology to be tested is the OMNN based classifier. The confusion

matrix for this classifier is shown in Table 7.24.

Table 7.24. Confusion matrix of OVO KNN-based citsis

Outputs
MLRM-1 MLRM-2 MLRM-3 MLRM-4 MLRM-5 prégg'i"o'gﬁ %) prec(i)s‘i’g;a('i'n %)
MLRM-1 | 1313 84 0 0 0 93.0 85.4
2 MLRM-2 08 1317 143 0 0 76.1
S MLRM-3 0 328 1139 37 0 72.7
~  MLRM-4 0 0 283 1145 128 96.8
MLRM-5 0 0 0 0 1543 92.3

It can be noticed that the OVO KNN based classifiees provide a slight improvement in
performance compared to the single and OVA clasgsifpreviously shown. However, a total of
ten KNN classifiers are used in this approach,dierincreasing the complexity for practical

applications.

7.1.3.5 AdaBoost KNN based classifier

The last and final methodology tested using the K&jigroach is the AdaBoost algorithm
with KNN as its main classification technique. Té@nfusion matrix for the AdaBoost KNN

based classifier is shown in Table 7.25.

Table 7.25. Confusion matrix of KNN-based AdaBazlatsifier

Outputs
MLRM-1 MLRM-2 MLRM-3 MLRM-4 MLRM-5 Individual Overall
precision (in %) precision (in %)

MLRM-1 | 1376 21 0 0 0 87.7 80.0
% MLRM-2 193 1142 223 0 0 67.2
S MLRM-3 0 536 859 109 0 57.8
F  MLRM-4 0 0 405 1125 26 91.2
MLRM-5 0 0 0 0 1543 98.3

www.manaraa.com



113

By comparing the confusion matrix of the KNN basAdaBoost classifier with the
performance of a single KNN, it can be noticed thaloes not achieve superior classification
performance. In fact, the classification precisi®meduced for most of the MLRMs. Therefore,
this is a strong indication that this type of ciies may not be suited for classification in this

case.

7.1.4 SVM based classifier

In order to investigate the performance of SVM,i@aly classifier is used for multiclass
classification in this study. The reason why a bin&VM is used is due to the fact that
multiclass SVM is still an open subject and ancefit method is yet to be developed, Bishop,
C. (2006). Therefore, the three possible methoaisdan be employed in this case are the OVA
SVM based, OVO SVM based and the AdaBoost SVM batasstifiers. A detailed analysis of

these three methods is given next.

7141 OVA SVM based classifier

The first implemented approach using SVM is the OviAthod. Similarly to the DT, ANN
and KNN based methods, this technique employs 3iV&1 which will try to distinguish each
MLRM from all the rest. The confusion matrix of ti&/ A SVM based classifier is shown in
Table 7.26.

As noticed below, the classification precision bk tOVA SVM based method is not
significantly superior to the other techniques stigated before. This is an indication that this
type of classifier is not able to distinguish amding classes very well, hence not being efficient

for practical applications.
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Table 7.26. Confusion matrix of OVA SVM-based cifiss

Outputs
MLRM-1 MLRM-2 MLRM-3 MLRM-4 MLRM-5 Individual Overall
precision (in %) precision (in %)

MLRM-1 1354 43 0 0 0 62.2 77.4
% MLRM-2 150 1284 124 0 0 85.5
S MLRM-3 616 175 713 0 0 60.2
F  MLRM-4 57 0 348 962 189 61.8
MLRM-5 0 0 0 0 1543 89.1

Moreover, the time involved in the design of thissifier has been significant superior than

the other classifiers, which my represent anothticalty for application to real-sized/large

networks.

7.1.4.2 OVO SVM based classifier

The next methodology tested is the OVO SVM basasdsdier. A total of ten SVM are used

in this approach and the confusion matrix is shawmable 7.27. Once again, the classification

precision of the method is not significantly supegompared to any of the previous methods.

Table 7.27. Confusion matrix of OVO SVM-based dféss

Outputs
MLRM-1 MLRM-2 MLRM-3 MLRM-4 MLRM-5 prégg'i"o'g“(ﬁ: %) prec?s‘i’g;a('i'n %)
MLRM-1 | 1358 39 0 0 0 52.4 72.0
5 MLRM-2 | 300 1192 66 0 0 84.8
S MLRM-3 | 755 175 394 170 10 57.5
F  MLRM-4 180 0 225 962 189 85.0
MLRM-5 0 0 0 0 1543 88.6

However, the amount of time involved with trainitiys classifier has been significantly

higher than any of the previous methods, which megresent a drawback for practical

applications.
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7.1.4.3 AdaBoost SVM based classifier

Differently than the previously investigated methpthe AdaBoost classifier has shown a
very good classification performance while trying tlassify which MLRM to use. The

confusion matrix of this classifier is shown in Te&3.28.

Table 7.28. Confusion matrix of SVM-based AdaBaxassifier

Outputs
MLRM-1 MLRM-2 MLRM-3 MLRM-4 MLRM-5 prégg'i"o'g“(ﬁ: %) prec?s‘i’g;a('i'n %)
MLRM-1 | 1369 28 0 0 0 94.4 87.9
5 MLRM-2 81 1405 72 0 0 86.2
S MLRM-3 0 197 1303 4 0 75.9
= MLRM-4 0 0 340 1027 189 99.6
MLRM-5 0 0 0 0 1543 89.0

The classification precision of all models is sfgaintly high using the AdaBoost approach
(above 75%), although other classification techeggjbhave shown better results. Overall, the use
of SVM for classification has not shown drasticadighanced performance compared to other
methods. On the other hand, the time involvedaming SVM methods is significantly higher
than the other three techniques.

Therefore, applications of the technique to largegr system networks may be difficult due

to the large amount of data available.

7.1.5 Stacked classifier

Another powerful way of enhancing the classificatiprecision of the hierarchical
classification method is by combining differentsddiers into the process. For instance, for the
three classifiers used in the hierarchical progesise previous study, the first classifier coutd b

a DT, with the second one being a KNN and the tbire being an ANN.
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In order to enhance performance, we have combiriesldhd ANNs together as a stacked

classifier to improve classification precision. Ttlassifiers used at each stage are described in

Table 7.29, Table 7.30 and Table 7.31, respectively

Table 7.29. Confusion matrix of DT-1

Outputs
MLRM-1 MLRM-2 MLRM-3 MLRM-4 MLRM-5 Individual Overall
precision (in %) precision (in %)
MLRM-1 1363 32 2 0 0 94.6 84.2
= MLRM-2 78 1456 24 0 0 71.9
% MLRM-3 0 536 895 73 0 65.4
F  MLRM-4 0 0 448 1108 0 93.8
MLRM-5 0 0 0 0 1543 100.0
Table 7.30. Confusion matrix of DT-2
Outputs
MLRM-2 MLRM-3 MLRM-4 Individual Overall
precision (in %) precision (in %)
= MLRM-2 473 21 0 93.3 84.4
% MLRM-3 34 503 36 74.1
F  MLRM-4 0 155 358 90.9
Table 7.31. Confusion matrix of ANN-3
Output
Individual Overall
MLRM-3  MLRM-4 precision (in %) precision (in %)
‘g MLRM-3 305 17 97.1 95.3
& MLRM-4 9 224 92.9

The final classification accuracy of the hierarahistacked classifier is further enhanced

from previous schemes and the results are giv@ialihe 7.32.
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Table 7.32. Final classification precision of therarchical stacked classifier

Final classification precision (in %)

MLRM-1 94.6
MLRM-2 92.6
MLRM-3 94.4
MLRM-4 90.4
MLRM-5 100.0

Therefore, it can be observed that by using stackkdsifiers in the hierarchical
classification method, the final classification gsgon of all MLRM is higher than 90%. This is
a very good result since the designer can enhdassification performance at no extra cost, as

all individual classifiers have already been destyn

7.2 Results on the 22k bus system

7.2.1 Development of the MLRM-IDtool

Although four techniques have been investigatedipusly, only two of them will be used
in this practical system for their simplicity an@gsibility of practical implementation. These
methods are easy to understand and provide goodlvigormation, specially in the DT case.
Therefore, the two methods investigated for thisteay are the DTs and KNNs due to their
suitability to practical implementation and goodsdification performance,

Before the development of the MLRM-IDtool, the makscriptive attributes (variables)
among the ones described in Table 4.1 need to évdifiéd. The reduction in the number of
variables is important in this case of thousandativibutes are available. If an excessive number
of attributes are used during the design of the MEI®tool, adverse effects such as curse of

dimensionality and increased complexity may occur.
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In order to handle the excessive number of varglilee performance of each attribute will
be analyzed separately and only attributes thatodstrate superior classification performance
will be selected.

Two different datasets have been considered tothestMLRM-IDtool. The first dataset
contains the same contingencies used during theértggphase and independent LIDs are used to
generate unforeseen operating conditions. Howeweasrder to investigate the performance of
the tool for unforeseen contingencies and scenaaiafferent contingency set is also used in
this case. It will be shown later that the KNN lthstassifier has better performance in case

unforeseen contingencies occur.

7.2.1.1 DT-based classifier

A DT-based MLRM-IDtool is developed using the aitfun C4.5 previously described. As
mentioned before, two different scenarios are ammsed in this case. Initially, only unforeseen
load increase directions are considered similarlthe cases used to test the MLRMs. Next, ten
unforeseen N-k contingencies and five independéds lare used to generate fifty completely
unforeseen scenarios.

Figure 7.1 shows a summary of the classificatioecigion of each variable when used
separately. The elements labeled from top to bottothe legend are the same from right to left
on the bar groups for each one of the variables.

The x — axis contains the variables used in the d@Velopment. A DT is constructed
considering each one of the variables types seggrdthere are a total of 603 variables of each
type indicated as 1Ry, Poss Qiow, Qoss and Gnag Which represent all 161kV and above
transmission lines and transformers in the studred. A total of 276 bus voltage magnitudes are

represented by then variable type with rated voltages of 161kV andwabo
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The classification precision of the developed D&s be seen in Figure 7.1. Although all
variables have shown satisfactory performangg, Bnd \inag have shown slightly superior
results. When only g, variables are used, the classification precisias &n overall test value
of around 97%, and the MLRM with lowest classifioat precision is M1 with 95%. The DT
created using Mag as attributes has an overall classification piegi®sf 96% and the MLRM

with M1 having the lowest classification precisioin92.5%.

100.0
98.0
. 960
S EM1
E 94.0
8 mM2
m 92.0
§ =M3
a2 90.0
5 = M4
< 88.0
Q
= = Qverall
c_‘g 86.0 Testing
O = Qverall
84.0 Training
82.0

80.0
Cmag Pflow Ploss Qflow Qloss Vmag

Attributes used in the DT development
Figure 7.1. Attribute analysis under unforeseendd@r DTs

Another important point to be noticed is the faoatt M3 and M4 have shown higher
classification precision than M1 and M2. This isvery desirable characteristic since those

models contain the most critical contingencies, flee contingencies with lowest VSM.
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Another advantage of usingiR and Vg is that they are easier to be obtained and
monitored as they are readily available in SCADA&&NDther variables likeiis Qossand Gnag
can only be obtained after processing SCADA dateesthey are not directly measured most of
the time. Therefore, bothyd and Vag variables are used to build the final DT-based MI-R
IDtool.

In order to further reduce the amount of data usethe tree, only major 161-345kV buses
and transmission lines are considered in the psocHsis simplification helped to reduce the
total amount of data necessary during model dewsdop. An excessive amount of available
attributes at the DT development stage can causghenmomenon known as curse of
dimensionality, where several good predictor attels compete against each other. This
attribute competition is likely to adversely affedtthe DT development and reduce its
classification abilities. The total number of ditries (variables) available for training the
classifiers is thus reduced from 3291 to 122, §icamtly facilitating the development of the
tool.

Figure 7.2 shows the decision tree built using oRly, and Mnayg on a few selected

transmission lines and buses rated 161-345kV.
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Figure 7.2. DT created using.R and \inagas attributes

The confusion matrix for the tree including thessiéication precision for each MLRM is
shown in Table 7.33. As can be observed from thie tindividual classification precision for all

models is above 90% as required by the designfapmns.

Table 7.33. Classification precision of DT develdpsing Row and Vinag

Outputs
WA RN WS R e o
MLRM-1 | 2136 34 0 0 93.1 97.7
S MLRM-2 | 124 2007 2 0 98.3
S MLRM-3| 35 0 2048 0 99.9
MLRM-4 0 0 0 2188 100.0

o Effect of unforeseen contingencies
In order to evaluate the classification precisibthe technique on unforeseen contingencies

and LIDs, a set of 10 contingencies and 5 indep&ndids is created. A VSA is performed

using the aforementioned contingencies and LID®uAd 500 samples are taken from the 50
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scenarios and used to generate the independeingtdstaset. Similarly to what has been done

previously, a DT is developed for each attribuggetynd the results are summarized in Figure

7.3.
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Attributes used in the DT development

Figure 7.3. DT attribute analysis under unforesamtingencies and LIDs

The results show that the classification precigibthe DT can be significantly affected in
case unforeseen contingencies are used during TheaeBting stage. Overall classification
precision has dropped to values ranging from 50-8@3dicating spurious classification
performance compared to the case where only différ®s are considered.

Attempting to solve this problem and improve clisation precision for unforeseen
contingencies, most techniques usually add the umdareseen contingencies to the training set
and retrain the DT on an extended set. This reitrgion an extended dataset including data

from unforeseen contingencies should be able toaugperformance in those conditions.
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Overall, the DT can be a powerful technique in tlevelopment of the MLRM-IDtool.
Appropriate re-training can make the methodologxifile to handle unforeseen contingency
and hence maintain high classification precision.

e Effect of noise

An undesired but rather common situation in SCADWMfE control centers is the reception
of data corrupted by noise. Various factors canseawise to be added to the real variable
measurements, with typical causes being defeatsatfunctioning of field measurement devices
weather, animals and vegetation.

Despite of the way how noise becomes present innteasurements, it is necessary to
properly investigate and analyze the impact thaait cause on the performance of the MLRM-
IDtool. Having that objective in mind, new trainirapd testing data sets are developed to
account for the influence of noise.

According to practical information, the amount obise considered in SCADA/EMS
measurements received in their control centerasirat 3%-5%. To account for that effect, the
previously used training and testing data sets Haeen corrupted with white noise. Five
different levels of noise added to the test sefcaresidered in the study: 0%, 1%, 5%, 10% and
15%. These different amounts of noise represeert@eptage of the actual variable value and are
used to generate the Gaussian white noise.

Once the Gaussian curve representing noise is @federa random value is sampled from it
and added to the actual variable value. By doinggstem variables vary up and down around
the actual measurement. A pictorial representatiotine different amounts of noise as normal

distributions is shown in Figure 7.4.
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Figure 7.4. Representation of different amountsam$e added to the actual data

One of the most traditional approaches to make nestaners resilient to noise is to train
them in the presence of noisy data, Bishop, C.(M95). In order to improve DT performance
when noisy attributes are present, noise is adaléakettraining set in a similar way it is added to
the test set and results are shown in Figure Hb.l&gend shows different training conditions
used to improve the performance of the DT; the is-akows the amount of noise included in the

test set and the y axis shows the overall classifin precision in the test set.

www.manaraa.com



125

E 100.0 =4 N0 noise
:% 90.0
[&]
9] oo i
5% 80.0 - 1% noise
c

c
2< 700
L3 5% noise
‘% 60.0
&3
% 50.0 === 10% Noise
o
> 40.0 . . : . )
O

0% 1% 5% 10% 15% = ®= 15% noise

Amount of noise in the test set

Figure 7.5. DT performance on noisy data for urdeen LIDs

The first case represents the condition where thaslirained without noise and tested on
sets with different amount of noise. As observethapicture, the DT performs well when there
is no noise added to the test set and the preat&oays continuously as more noise is added to
it.

By training the DT with a training set considerib% of noise, the precision is kept high for
both when there is no noise and when there is 1i%end the test set contains more noise than
what is used to train the DT, the performance diltays but at a slower rate compared to the
case when no noise is added to the training set.

The results presented in Figure 7.5 indicate thatDT performs well when the amount of
noise added to the measurements is smaller or emughe amount of noise present
measurements used in the training dataset. Anotipartant characteristic is that even when the
DT is trained with a significant amount of nois®&¥d), its performance does not decay for cases

when no noise is present in the measurements.iglais important result because although the
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SCADA/EMS can be corrupted with noise, there wéldrcumstances where the measurements
are noise free or have a small amount of noise.
After incorporating 15% of noise in all measurenseior R and Mnag attributes, a new DT

is developed and shown in Figure 7.6.
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Figure 7.6. DT created usingo.R and Vinagas attributes and trained with 15% noise

In order to be able to maintain a god classificafoecision, the size of the tree had to be
increased. However, the relative increment in sizeuld not affect the implementation of the

DT as it is still adequate for practical implemeiata. The confusion matrix for the final DT

trained with noise is given on Table 7.34.
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Table 7.34. Classification precision of DT traineing Row and Vinagand 15% noise

Outputs

MLRM-1 MLRM-2 MLRM-3 MLRM-4 Individual

Overall

Precision (in %) precision (in %)

MLRM-1 | 2066 87 16 1 95.0
8 MLRM-2 | 97 2016 20 0 95.5
S MLRM-3| 8 8 2067 0 98.1

MLRM-4 | 4 0 4 2180 100.0

97.1

In order to evaluate the impact of noise in thespnee of unforeseen contingencies and

LIDs, a similar procedure is used to analyze the.Ohe results of the analysis are summarized

in Figure 7.7. The figure below shows that the sifasation performance significantly decays for

the case when unforeseen contingencies and LIDsissed. The only case when the overall

precision surpassed 90% is when the DT is trainéd 1% of noise.
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Figure 7.7. DT performance on noisy data for urdeem contingencies and LIDs

These results were expected since the DT has shaignificant reduction in classification

precision in case unforeseen contingencies aradedl in the test set as observed in Figure 7.3.

Therefore, the DT is not ale to generalize wellase unforeseen contingencies occour.
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7.2.1.2 KNN-based classifier

After investigating the use of DTs as the core mémle in the MLRM-IDtool, it has been
noticed that the performance of the tool on unfeeescontingencies can be significantly
affected. A significant improvement of the methaxtpl can be achieved in case this limitation is
overcome.

The need of frequent MLRM-IDtool re-training can tegluced in case the tool performs
better on unforeseen contingencies. It will be ghdater that by using a KNN classifier in the
MLRM-IDtool, an improvement in classification premn can be obtained.

e Tests on unforeseen LIDs

Before we start testing the technique on unforegd®s, an investigation of all attributes is
made in order to identify the ones that give thst lstassification precision. Similarly to the DT
case described in earlier sections, a KNN classifiedeveloped considering a single type of
variable at a time.

The datasets used here are the same ones usedDii tevelopment and testing. Therefore,
there is a total of 603 attributes (variables) e Row, Poss Qiows Qoss and Gnag types,
representing all 161kV and above transmission lares transformers in the studiedarea. A total
of 276 bus voltage magnitudes are represented Mhyattributes (variables) type with rated
voltages of 161kV and above for the same MEC/ALT\MAa

The tests of the KNN-based MLRM-IDtool are summedian Figure 7.8. Overall, all the
attributes have a very similar classification perfance for both individual MLRMs and overall
classification precision of the test set. Only @& attributes have shown inferior performance
when compared to other attributes. In additionhtat,tthe performance of KNN classifiers also

slightly surpasses the ones using DT classifiaréhi® same testing set and shown in Figure 7.1.
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Figure 7.8. KNN attribute analysis under unforeskei®s

Once again, in order to further reduce the amotidata used by the KNN and consequently
increase the classification speed, only major 34bkMes and transmission lines have been
considered in the KNN development.

Similarly to the DT-based MLRM-IDtool, the attrites Ry and Vinagare selected to reduce
the number of attributes available during the KNBvelopment and reduce the chances
dimensionality issues. Since both attributes arectly available in SCADA/EMS, they can be
directly used and thus eliminate the need of egalgulations. This simplification helps to
reduce the total amount of attributes used in tin\NKrom 3291 to 122, hence reducing the
computational time necessary to develop the KNN.

The confusion matrix for the KNN based classifieatitool using only Bw and Vhag is

shown in Table 7.35.

www.manharaa.com




130

Table 7.35. Classification precision of DT develdpsing Row and Mnag

Outputs
Individual Overall
MLRM-1  MLRM-2 MLRM-3 MLRM-4 Precision (in %) Precision (in %)
MLRM-1 2129 39 0 2 95.1 98.2
S MLRM-2 | 109 2024 0 0 98.1
< MLRM-3 0 0 2083 0 100
MLRM-4 0 0 0 2188 99.9

It can be noticed that the classification precisobreach individual MLRM is above 95%,
thus indicating the powerful capability of the KNbdsed MLRM-IDtool.
o Effect of unforeseen contingencies

In order to evaluate the classification precisiontlle KNN-based MLRM-IDtool on
unforeseen contingencies and LIDs, the same cantoygset used to evaluate the DT is used
here. A KNN classifier is developed for each atitébtype similarly to what has been done for

the DT case and the results are summarized in &igor.
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Figure 7.9. KNN attribute analysis under unforeseamingencies and LIDs
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Differently from what has been observed for the Dife classification precision of the
KNN-based MLRM-IDtool is maintained high than thases where only unforeseen LIDs are
used in the test set. Such an outstanding perfaren@presents an enormous improvement since
it may significantly reduce the need for re-tragithe MLRM-IDtool.

By no means can we ensure that the classifier pasfovith high classification precision for
every possible unforeseen network topology and tioatetraining is required after the KNN-
based MLRM-IDtool has been developed. However, ae say that if the MLRM-IDtool is
developed with a KNN-based classifier rather th&Tabased one, the need for frequent re-
training can be reduced.

In our opinion, this discrepancy in performanceasised by the inherent difference on how
the algorithms work. The DT technique selects aiced number of attributes of a large data set
to construct the tree. As the tree is branchedsahefications are constructed on a portion of the
original database. Therefore, further expansiorth®tbranches are done using local portions of
the training dataset, instead of the complete datas

On the other hand, the KNN technique always udesaahples and attributes in the entire
dataset. Every classified instance is based ondheest neighbors of the entire data set, and not
only on a patrtition of it. The downside of this vi@ie time required to classify a new instance
as all data is considered for classification. Hogvesince only the current system operating
condition has to be classified every few secondsj@st to identify the current system operating
condition), the speed classification is on the paletens of a second, fast enough for the time
frame of interest.

By comparing the results obtained with the DT ahd KNN techniques, it has been

observed that the KNN-based MLRM-IDtool has showpesior performance than its DT-based

www.manaraa.com



132

concurrent. Considering that no extra additionahplexity is added, we see the KNN-based
MLMR-IDtool as a good option to handle unforeseemtmgencies with high classification
precision.

e Effect of noise

Similarly to the investigation performed to findtahe influence of noise in the DT-based
MLRM-IDtool, tests have been performed with the Kidbised MLRM-IDtool. The objective is
to evaluate its performance when there is noissgotan the SCADA/EMS measurements.

The test data sets used here are the same onesiusealssess DT’s performance and will
not be described for the sake of simplicity. Ndees been added in the same manner and the
reader should refer to the previous section foroaentletailed explanation. The results obtained

are presented in Figure 7.10 and Figure 7.11, ctispéy.
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Figure 7.10. KNN performance on noisy data for vegeen LIDs

Figure 7.10 shows the classification performancethef KNN-based MLRM-IDtool for

different load increase directions. Each case shawime legend represents a different amount of
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noise added to the training set. It can be condudden the graph that the technique has shown
to be innately noise resilient. The addition ofsaoin the training sets neither improves nor
decreases classification precision significantlyhich is a completely different behavior
compared to the DT-based classifier under the sam@mstances.

The results shown in Figure 7.10 indicate a vergdgaharacteristic of the KNN-based
MLRM-IDtool compared to the DT-based one. While Ddsed classifier showed reduced
classification precision when more noise is addeithé measurements, the KNN-based classifier
has shown to maintain classification precision fewéd throughout a wide range of noise.

Figure 7.11 shows the classification performancéhef KNN-based MLRM-IDtool in the
presence of noise and under different load incrdasetions and unforeseen contingencies.

Once again, the addition of noise in the trainirgs sneither improves nor decreases
classification precision significantly. It can beoticed that classification performance is

maintained above 95% for all cases and does natfisgntly vary in the presence of noise.
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Figure 7.11. KNN performance on noisy data for vegeen contingencies and LIDs
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The classification performance has been maintacwtstant throughout a wide range of
different noise values as shown in Figure 7.11.s€hesults are significantly different than the
ones observed for the DT-based classifier, whexeldssification precision significantly decays
in the presence of noisy inputs and under unforeseatingencies and LIDs as seen in Figure
7.7.

The confusion matrix for the KNN classifier trainetth 15% of noise and tested on 15% of
noise is shown Table 7.36. Similarly to the DT lobskassifier trained with noise, all MLRMs
are classified with precision superior to 90%. 8itlus is the precision criteria considered in the

design stage, the KNN classifier shown in the tabkhe one selected to be used in the MLRM-

IDtool.

Table 7.36. Classification precision of KNN traingsing Row and Vinagand 15% noise

Outputs
MLRM-1 MLRM-2 MLRM-3 MLRM-4 prégg'i"o'gﬁ %) prec(i)s‘i’g;a('i'n %)
MLRM-1 1925 55 0 190 91.8 93.4
S MLRM-2 123 1885 99 26 96.1
S MLRM-3 12 22 2045 4 95.4
MLRM-4 38 0 0 2150 90.7

After analyzing the results obtained in this settiwe believe that if a KNN-based classifier
is used in the development of the MLRM-IDtool, armaobust classification tool can be
obtained.

It has been noticed that the KNN based MLRM-IDtsohaturally noise resilient and is also

able to identify the appropriate MLRM even when areeen network topologies and load

increase directions occur.
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Further research could focus on identifying thesoea why the KNN performs so well even
for unforeseen contingencies. In addition to teatdies can be conducted in order to identify the

cases where the KNN cannot provide accurate pedocen

7.3 Conclusions

Several multiclass classification methods and mmechearning techniques have been
investigated in order to develop the MLRM-IDtodlhbs been shown that the complexity of the
tool will depend on how difficult it is to identifghe right MLRM. A hierarchical stacked
classifier combining DTs and ANNs has shown prowti best results for the IEEE30 bus test
system. In case several variables are presengblarselection can significantly reduce the total
number of variable used to identify the MLRMs. Hshalso been shown that the DT based
MLRM-IDtool can be made noise resilient and achigeed accuracy if it is trained with noisy
variables. The KNN-based MLRM-IDtool has shown tibherently less susceptible to noise
compared to the DT-based tool. This has been obddor test sets containing only unforeseen

LIDs and for unforeseen LIDs and contingencies.
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CHAPTER 8. APPLICATION OF REACTIVE POWER RESERVE
SENSITIVITIES FOR REAL TIME VOLTAGE

STABILITY MARGIN CONTROL

This study has the objective of determining the thediective control actions in order to
reestablish critical RPRs and VSM during emergenownditions. Initially, the concept of
reactive power reserve sensitivity with respeatdotrol actions is introduced. In the sequence, a
control approach based on a convex quadratic amaiion problem is used to identify the
minimal amount of control necessary to increase RBRI VSM above offline pre-specified
levels. The approach identifies the proper locatma amount of control necessary to bring
specific reactive power reserves to pre-specifeaetls. Simulation results have shown that by
using reactive power reserve sensitivities, systgmrators can optimally determine a proper
amount and location of control actions in orderréstore critical RPRs and enhance VSM.
Moreover, the optimization problem size can be nadall by only selecting the most effective

control actions, thereby facilitating real time ilmmentation of the method.

8.1 Introduction
With the increased penetration of smart grid tetdgies and expansion of renewable
generation portfolio, electric power systems arpeeted to operate under unprecedented levels
of uncertainty, EISA (2007). Innovations in botrartsmission and distribution levels are
certainly not only changing the way power systeisave, but also the way that the systems are

operated.
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Although the benefits of a more efficient systemthwa lower carbon footprint are
innumerous, the challenges faced in order to implgrand operate such a system are enormous,
USDOE (2007) and USDOE (2008).

In order to maintain the grid efficient and reliabbperators will need to take quick and
effective measures against degenerating systemitimmsd Therefore, methodologies for real
time control will play a crucial role in maintairgrsafe operation. This research addresses the
problem of real time voltage stability control imergency conditions.

The influence of reactive power reserves in mamma adequate voltage control and
stability is widely known Taylor, C. (1994), Van Gam, T and Vournas, C. (1998), Ajjarapu,
V. (2006). In the United States, NERC has issuathdgtrds that aim at monitoring reactive
power reserves in real time, TOP-006-1 (2006), TOB-1 (2006). The standards also require
transmission operators to maintain reactive regsuto be used in case degenerative system
conditions occur, VAR-001-1 (2006), VAR-001-1 (2010

Monitoring RPRs is the first step to improving gystreliability by observing whether RPR
levels remain within pre-established limits TaylGr,W. and Ramanathan, R. (1998), Bao, L.. et
al. (2003), Leonardi, B. and Ajjarapu, V. (2011)owever, in case RPRs start to drop below
acceptable levels, system operators need to rapidyvene to maintain RPRs within safe
limits.

Several studies have demonstrated that the amoéW8M has a strong positive correlation
with RPRs and different preventive/corrective cohéipproaches have been proposed.

Vaahedi, E. et al. (2001) proposed a planning VARthod considering credible

contingencies in a planning horizon. Margin requieats are incorporated in the approach
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which is formulated as a nonlinear optimizationlpeon with barrier functions and solved using
Bender’s decomposition method.

In Dong, F. et al. (2003), a dual objective optiatian approach to maximize the amount of
RPRs and reduce system losses is proposed. Siomutasults have shown that the amount of
VSM increased with an increase of RPRs. The appraozsed a nonlinear optimization
framework based on optimal power flow and bendeeésomposition to determine the best
current operating condition.

The concept of reactive reserve based contingerastiained optimal power flow
(RCCOPEF) is introduced in Song, H. (2003). An oplirpower flow framework is used to
identify the minimal amount of RPRs necessary tprowe the amount of VSM for various
contingencies and operating conditions. Implementadf the approach shows that the amount
of VSM is improved and that the found system s{ptaver flow solution) corresponds to the
minimum effective RPR.

The aforementioned approaches are based on vasatd nonlinear optimal power
formulation, hence being adequate for day aheadéde applications. They can also be used
to determine adequate levels of RPRs based on tindy sof different scenarios and
contingencies. However, if uncertainties involveithweal time operations reduce RPRs beyond
pre-specified limits, control actions should beetalquickly in order to avoid further voltage
profile degeneration and, in the worst case, ageltcollapse.

In this study, a methodology is proposed to additesproblem of real time voltage stability
through the enhancement of critical RPRs. The nekikcexpected to be used in emergency
situations, when low amounts of RPRs and VSM otagd violations are observed. Sensitivities

of control actions of these critical RPRs are usedetermine the optimal amount and location
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of control. Once the most effective control varesbhre identified, the solution of the quadratic
convex optimization problem will determine the mmail amount of control necessary to recover

RPRs and VSM.

8.2 Reactive Power Reserve Sensitivities
In order to develop a control approach that cowddubed to improve RPRs in real time
operations, two major aspects need to be takendotsideration: computational burden and
effectiveness of control. The approach needs tioased on a fast and reliable control algorithm,
which is expected to converge in a reasonable fiiamee. Moreover, the control actions obtained
must guarantee that critical RPRs will be resta@dafe levels after a minimal amount of
control is applied.
Before the concept of RPR sensitivities with resgeccontrol actions is introduced, the
definition of a generator RPR used in this worgrssented in (8.1).
Q; =Qu (R)—Q, , where
Quas (R =Vg / X+ VG Wi/ X5~ 7

In equation (8.1)Qki is the amount of reactive power reserve in geoeraQmaxi(Pg) is the

(8.1)

maximum reactive power limit given by the field hieg limit in the capability curve anQy;is
the current reactive power produced by generatoA simplified capability curve of a
synchronous generator is pictorially given in Feg8rl. A typical PV diagram shows the amount
of system VSM and is shown in Figure 8.2. Both feguwill be used to introduce the qualitative

effect of different controls on RPRs and VSM.
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Figure 8.1. Capability curve of a synchronous gatoer amount of RPRs depends on operating

condition (A, B or C) and machine limits.

Initially, let us assume that the system is opegatit point A both in Figure 8.1 and Figure
8.2. Consider that the amount of reserve that rbastaintained by the generator at point A
(Qra) is found to violate its minimum RPR requirements.

In order to bring the RPR to a safe level (usudlyermined via offline studies), control
actions must be applied to the system. One opfi@ormtrol would be to reduce the active power
generation fronPya to Pgg, thus changing the amount of RPR frQmn to Qrs. Another potential
control action is to switch shunt capacitors/reecto shed local load. In case shunt switching or
load shedding are employed, the reactive poweryatazh of the machine changes from point A

to point C as described in both in Figure 8.1 aigaife 8.2, with a final RPR @rc.
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No control applied
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Figure 8.2. PV curves depicting the linear constohtegy proposed.
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In this study, an attempt is made to explore thecept that by increasing the amount of

critical RPRs, the amount of system VSM will alsarease. Therefore, once proper amount of

control is applied on a critical set of generatéhgir RPRs should be brought back to levels

specified in offline planning studies, as shoulel #mount of system VSM.

Three potential control actions have been consiterehis study: active power re-dispatch,

shunt capacitor/reactor switching and load shedddtber control actions can be investigated

and the method proposed here can be naturally dedeno accommodate other controls.

Begovic, M. and Phadke, A. (1992) calculated thes#wities of reactive power generation with

respect to control actions. In this research, werek their by defining RPR sensitivities as

follows.

. RPR sensitivity with respect tg P
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The sensitivity of RPRs with respect to active pogeneration is introduced by equation
(8.2), wherePg; corresponds to the current active power generaiamiti, Q; is the reactive
power load at bus Qyi is the injected reactive power at nag¥, is the current terminal voltage,
ltmax IS the maximum field current limit ang, is the synchronous reactance of machingus

voltage angles and magnitudes are gived layndV,, respectively.

0Qs _ 0Ques (R 0Q, _9Quy(R) (9Q, 9Qr)_
oP, OB, 0P, P, oR PR

P, Z 0Q; 0, 0Q: &V, (8.2)
\/(Vt fmax/X )2 P2 j= 89 aP aVl aFgL

. RPR sensitivity with respect t@,B
Equation (8.3) represents the sensitivity of RPRE respect to shunt compensation. All the
variables used in equation (8.3) have been prelialescribed, with exception d@sn, Which

corresponds to the shunt capacitor bank akbus

0Qr  0Quay(P)  0Q _an(Fz,)_{aQL N aQT] _z(aQT 00,  0Qr oV, J
(8.3)

oB, 0B, 0B, 0B, |0B, OB 30, 3B , oV, 0B
. RPR sensitivity with respect tq Bnd Q
Equations (8.4) and (8.5) represent RPR sens#t#vitiith respect to active and reactive load

shedding, respectively.

aQR :anax(Pg)_an :anax(Pg)_ aQL_aer __ n aQiT 681 +8QT GVJ

oR, oR, oR, oR, oR_ OR =\ 00, 0P, " 8V, oR, (8.4)
aQR — ana)g (Pg) _ an — ana;(( %) _ aQL + anT — _i aQT 69] + a(QT av]
Q, 0Q, 0Q, 0Q, |eQ aQ ) %lav aQ, oV, aQ, (8.5)

In equations (8.4)-(8.5R.k (in 8.4) andQ.« (in 8.5) correspond to the active and reactive
power load at buk, respectively. The terméQ; /66, and 6Q; / AV, in equations (8.2)-(8.5)

can be obtained directly from the reactive powgation equation given in (8.6).
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P, =Vi3:(G cos@; 1§ sing )

=1

Q; =V> (G sin )-§ cosq ) (8.6)
j=1

However, the terms, / oR; » 00, /8By, + 00;10R, and 00, 10Q,, are obtained through the

linearization of the power flow equations aroune tirrent operating point.

Let us assume that the nonlinear set of algebrgiateons described in (8.6) can be
represented in a compact form as (8.7), wherepresents the vector of system variabis/f
andp represents any control variable used (in this,ds&s, PL or Q).

f(xp)=0 8.7)

Initially, let us assume that the system is opegatt point A in Figure 8.1 and Figure 8.2.

The linearization of (8.7) at the current operatoandition yields the relationship shown in

(8.8), wheref, |, represents the derivative of the power flow equegtioith respect to the system

variables (Jacobian) anfalp |,is the derivative of the power flow equations wigspect to the

control variables.

f(x P) o AX+ f (% Pl AP=0 8.8)

By rearranging the terms in (8.8), the relationdhgween system variables and the control

parameters (vectalx/dp) is given in (8.9).

~ dx
sz[—fx(x, P (% p)]A p:%A £ (8.9)

Calculation ofdx/dp elements does not involve the inversion of theobmm matrix since
efficient computational methods are available talfan analytic solution. These power flow

sensitivities are further used to calculate the RERSitivities defined in equations (8.2) — (8.5).
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8.3 On the selection of reactive power reserves

Previous studies have shown that RPRs are esseatialaintain stability and voltage
regulation across the system. However, only a rediset of those RPRs will play a crucial role
on system’s voltage stability. Since reactive poswgply is local in nature, RPRs are frequently
grouped together on voltage control areas (VCApsxthe system Morison, K. et al. (2008). In
general, VCAs are composed by load buses, gengrhtises and a set of contingencies that
affect that area. A generating bus is assignedd84/in case its participation factor on the most
critical eigenvalue is different than zero. Genammtusually have zero participation factors on
the most critical eigenvalue unless they have re@dtheir capability limits, Gao, B. et al. (1992).

Therefore, there are a reduced number of critieslegators that, if exhausted, will cause
voltage collapse. This group of critical RPRs hagrb calledbasin reactive power reserves
Schlueter, R. A. (1998).

In this work, an attempt is made to enhance ctitidRs (the ones that form the basin) in
order to improve the amount of voltage stability rgna According to Figure 5.2, the
relationship between RPRs and VSM can be approginby a linear function, Bao, L. et al.
(2003), Leonardi, B. and Ajjarapu, V. (2011). Byfarenulating (5.1) in terms of RPRs and

VSM, the relationship between these two variabéasle expressed as shown in (8.10).

N(?rirtical Nc?i;ical N:?i;ical
VSM= le ai(QRi)_l__%:l}/jk(QRjQ?k)_l_ IZ; ﬂl(@l)"‘ﬂ (8.10)
i= j=1k= =

For small perturbations, the higher order termgid0) can be neglected and all individual
coefficients of the linear terms can be assumeddnee and equal @ This simplification will
cause incur in a larger error when estimating V&Mdwever, the error involved is relatively

small if a single network topology is being consatefor small perturbations. It will be shown
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later that despite the approximation, the contrethmad finds a converged solution in a relatively
small number of iterations. Therefore, by making #ffiorementioned simplifications, amount of

VSM and critical RPRs can be approximated as (8.11)

. . . . . . Total
By taking the first order derivative of equation1(B) with respect t Roa, the rates of

VSM change with respect to total critical RPR chesg approximately constant.

Qr
critical

VSM~ « Z; Qr +8=aQ™ + (8.11)
dvsm_
ngotal ~ (8.12)

Equation (8.12) indicates that a constant terroan be used to relate the changes in the

amount of VSM with changes in the sum of all cati®RPRs Q;"taj). This linear approximation

is very important for it will enable us to estimate VSM margin enhancements using changes

in critical RPRs.

8.4 Proposed control methodology

So far, the concept of RPR sensitivity with resgectontrol actions has been introduced.
The next step is to formulate the control probléat tan make use of the most effective controls
to enhance critical RPRs. The objective is to idigtihe minimal amount of control necessary to
increase RPRs and VSM to adequate levels whiletaiaing a normal voltage profile.

It is important to ensure that voltage limits aot wviolated when control actions are applied.
Moreover, in case localized low voltage violatiatsur, the control actions can also be used to
remove voltage violations so that the system opsratithin the normal voltage band. N this

study, the normal voltage band assumed is 0.924.105
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In order to minimize the amount of control, an ol control approach is proposed in
(8.12). The objective function is formed by the soithe squares of each control action that can
be applied to the system. The control actions epeesented bylPgy, ABgsh, AP and APgm,
whereas their respective weights are givendy, w®", w" and w,?. The indexeNpg, Nosh
Noi andNg represent the total number of generators to lesgatched, total number of capacitor
banks considered and total number of active andtivealoads considered to be shed,
respectively.

The first inequality constraint ensures that thiéical RPRs will be shifted back to their
minimum reserve limits, whereas the second inetyuatisures that a minimum amount of VSM
is achieved.

RPR sensitivities with respect to changes in agiioeer dispatch, shunt capacitor/reactor

switch, active and reactive load shed are repredeby 0Q; /0F, , 0Q; /0B, , 0Q; /0R,

oQ; /0Q_, respectively.

Maintenance of adequate voltage limits is accoufdech the third inequality. The equality
constraint ensures that load shedding is perforatemnstant power factor for any loadvith
phase angle given b¥,. A total oftl buses are considered for load shedding.

Since the problem (8.13) has a quadratic positiefinide objective function with linear
inequality and equality constraints, it can be siféeesd as a quadratic convex optimization
problem. For this type of problems, a solution banfound (or shown not to exist) in a finite
number of iterations. In order words, the optim@atproblem can be solved in a finite amount
of time, Nocedal, J. and Wright, S. (2006).

For quadratic convex optimization problems, evecal optimum solution can be shown to

be the unique global optimal. This is a very impottcharacteristic of these type problems as it
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ensures that the search for the optimal amounbofral will always find the global optimum
solution, Nocedal, J. and Wright, S. (2006).

However, since this quadratic convex optimizatioabem needs to be solved iteratively,
there is no guarantee of convergence for the ssimeegerations of the approach. In case the
VSM, RPR or voltage magnitude requirements areifsigntly stringent, there may not be
enough control resources in order to find a core@igplution within the feasibility region of the
problem. Therefore, it is important to make surat ttnough control actions are considered in

(8.13) in case significant enhancements of VSM, BRI voltage profiled are required by the

system.
Npg 2 Nogy 2Ny Z N 2
Min 3w (aR,) +3 Wi (aB, ) +3 W (AR) +2 W (4 Q)
=1 j=1 =1 m=1
st
Npg Nosn d »
current Z QR Z Z A P Z A QL" > C$|nlmal
k=1 FZ} j= 1 1=1 dP

current Ny critcal Npg QR QR Ny dQR in
VSMM™ 4o | D —3-AP, +Z AB, +Z APh+ AQ_|>VSM
i=1 k=1 d% © HdB sh, m=1 de

N Nyi
(;TQ > 'jilhdd% AB, +Z dVAP mzl%Aqm} \P <y (8.13)
[tan@_ )][AR. ]=[AQ, ] . withu=[1L ,tI]

AP™ < AP, < AP

ABJ" < ABy, < ABJ

AR™ <AR <AR™

AQM™ <AQ <AQ™

The last four inequalities ensure that limits agérebd for each control variable so that it will
remain within operational range, i.e., that the anmaf control obtained is within physical and

operational limits of each device.
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A stepwise description of the method used idertiy minimal amount of control is then

given in Figure 8.3.

Online system monitoning

RPRs,
WEM or volt.
levels below
in, limit?

Identity critical RPRs (the ones
that have their RPRs

Calculate RPR sensitivity with
respeact 1o potential contral
actions
I

_____ v v
Elsa:
H Update

-

Y
Select the most effective control
actions to improve RPRs of

exhausted at the nose point) >

Cakoulate RPR sensitnity with
raspact to potantial contral

actions

Solve optimal control protlem to
identify the proper amount of
control needed to restore
RPRs, VSM and vollages

Apply control actions and check
VEM improvement

interest

Solve optimal contred problem to
identify the proper amount of

controd needead to restore
RPRs, WSM and vollages

Apply control actions and check
RPR and YSM improvement

RPR and volt.

Mo

WEM
constraint
satisfied?

Figure 8.3. Flowchart describing the proposed aggro

Initially, system conditions are monitored in reéiahe during operations. Once RPR/VSM

limits are violated or unsafe operating conditi@me identified, the methodology is applied to
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identify critical control actions. Initially, theystem is stressed until the collapse point and the
RPR basin is determined. RPR sensitivities witipeesto control actions are then calculated at
the current operating point.

In the first iteration, the variation of the sum @itical RPRs with the amount of VSM
(shown in eq. 8.11) is unknown. In order to keep WYEM margin constraint in (8.13) from
binding, a very large value faris assumed in the first iteration.

Only the most sensitive control actions on critied?Rs are included in the optimization
problem (8.13). This makes the control search effgctive and reduces the dimension of the
optimization problem, valuable characteristicselitime problems.

Solution of the convex quadratic control problenil8} will determine the minimal amount
of control necessary to recover critical RPRs. this type of problem, it can be shown that
every local optimum solution is also a global optim solution, Nocedal, J. and Wright, S.
(2006).

Once the control actions are identified by solid 3), they are applied to the system and
some requirements are verified. In case all requergs are met, the approach is considered to
have converged. Otherwise, parameteris updated and the process continues until all
requirements are met.

It is important to mention that since the contrppeach is based on a linearization of the
system, it is likely that the amount of control mauafter the first solution of the optimization
problem may not satisfy all RPR, VSM and voltagguieements imposed. Therefore, the
approach is iteratively applied until all the coasits are satisfied. It will be shown later that a

few iterations are usually needed in order to achadl imposed requirements.
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8.5 Simulation results

8.5.1 IEEE 30 bus test system

This system is composed of five generating unith @rslack bus. The studied scenario is a

high load condition case, where the system is operavith total load demand of 285.40MW

and VSM of 37.08MW. At this load level, some of tRPRs are low and close to be exhausted

as indicated by thimitial bars in Figure 8.5.

After stressing the system to the collapse poirthas been noticed th&gs, Qr11 and Qris

have their limits reached and lose voltage cortegability. Therefore, these three units will

form the reactive power reserve basin. The seiggvRPRs with respect to control actions are

calculated for the current operating point and showTable 8.1.

Table 8.1. Sensitivity of RPR with respect to diéfiet control actions

Active power generation Shunt capacitors switch

Pas Pgg Pau1 Peiz | Ba7  Bsmis  Bais  Baa

Be2a PuLis Quie PLa7 Qui7

Load shedding

Pioy Q1 PLog Qras Pios QLas

-0.10  0.20 0.15 0.23 0.25 0.12 0.11 0.11 0.12

0.00 0.07 0.01 0.05 0.04( 0.48 0.04 0.05 0.06

0.00 0.02 -0.06 0.27 0.23 0.33 0.22 0.27 0.33

0.00 0.00 0.01 -0.37 0.02 0.03 0.11 0.18 0.26

Qru1

0.00 0.00 0.01 0.02 -0.15| 0.03 0.52 0.39 0.25

Qriz

0.12| -0.25 -0.12 -0.26 -0.13

0.05 -0.05 -0.05 -0.05 -0.06

0.29 -0.28 -0.27 -0.31

0.16( -0.06 -0.18 -0.09 -0.26

0.39 -0.11 -0.46 -0.07 -0.33

-0.33

-0.26 -0.14 -0.28 -0.15 -031 -0.18

-0.06 -0.06 -0.06 -0.07 -0.07 -0.08

-0.34  -0.3B8 -0-0.42 -0.52  -0.60

-0.11  -0.29 -0.09 -0.23 -0.08 -0.18

-0.07 -0.28 -0.12 -0.33 -0.10 -0.25

Various important observations can be made fromtabée above. For instance, reducing

active power generation is likely to improve theRRBf the unit which has its active power

production reduced. Moreover, reducing active pog&meration in unit five, its RPR is also

reduced. This reduction is due to a higher increasiee amount of reactive power production at

that unit, compared to the gain obtained on thaloi¢ify curve shown in Figure 8.1. Although
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this type of behavior has only been observed in wmig it is a rather interesting observation
since RPRs are usually expected to increase witkdaction on generator's active power
production.

Figure 8.4 shows a comparison between the estinfRRR improvements and the actual
improvement for each control variable. As can endeom the picture, shunt compensation and
reactive load shedding have shown a linear behdweroa wider range of control compared to

active power reduction and active power load shed.

9
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< 3 N * * *
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Figure 8.4. Sensitivities of RPR of generator Q&.) with respect to various control parameters

These characteristics will directly affect the amibaf iterations needed by the algorithm in
while searching for the minimal amount of contilolaccuracies due to these nonlinearities will
require the optimization problem to be solved mibv@n once. An investigation of how each

control variable performs while enhancing RPRs 48 is done next.

www.manharaa.com




153
8.5.1.1 Py ascontrol action

As mentioned earlieQrs, Qr11 andQr13 are found to form the reactive power reserve basin
in this system and are thus included in the optmion problem described in (8.13). RRP
requirements for the three units are assumed t@helO0 and 10 MVAr as shown by the
horizontal bars above each unit in Figure 8.5. &hoentrol actions are considered in this case:
Pgs, Pg11 and Pg13 and the minimum active dispatch value of all thoegts is assumed to be
OMWs.

Due to the stringent RPR requirements, controlaédei limits and the small sensitivity of
active power re-dispatch, no feasible solution ddag found in this case. However, in order to
analyze the effect of reducing active generatitirtheee units had their active power production
set to zero and variations of their RPRs are shiowrgure 8.5. It can be noticed that the effect
of reducing generation tends to cause an enhantemeRPR on only the generator being

reduced, with a possible adverse effect on neankig.u

| |nitial

Backing all Pg8

70 - :
= 60 - m Backing all Pg11
<§E 50 - m Backing all Pg13
x 40 -
£ 30 -

Qg2 Qg5 Qg8 Qgll Qo13
Generating units

Figure 8.5. Effect of generation active power reéducon RPRs
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Moreover, due to the nonlinearity of the capabilityrve and if large excursions of the
control variable are imposed, reduction of actieaver generation may have an adverse effect
on RPRs as the one observed in unit 8. Thereforglgreducing active generation may not be

enough to enhance several RPRs simultaneously.

8.5.1.2 Bg, ascontrol action
According to the sensitivity values shown in TaBlé&, shunt capacitors should only cause

positive increments on RPRs. Capacitor banks d#dcat buses 7, 14, 18 21 and 23 are used to
illustrate the approach. As indicated before, adrdictions need to be taken in order to bring
Qrs, Qr11 andQr13 back to 20, 10 and 10MVAr, respectively. The maximamount of shunt
control allowed is 0.5pu on each location.

Implementing the procedure described in the flowichfFigure 8.3 and considering all the
control weights equal to 1, three iterations areessary in order to achieve all requirements

imposed in the design. The amount of control fooneach stage is summarized in Table 8.2.

Table 8.2. Control amounts using load shed as clattion

ABsi7 ABsh1a ABgig 4Bt ABgnas
After Cl(p.u) 0.018 0.089 0.113 0.156 0.195
After C2 (p.u) 0.033 0.069 0.068 0.068 0.054
After C3(p.u) 0.141 -0.001 -0.009 0.168 -0.058
Total (pu) 0.192 0.157 0.171 0.392 0.191

Figure 8.6 shows the effect of each round of cordrothe RPRs. Since control variables
with a higher sensitivity on the critical RPRs areluded in the optimization problem, there is a
higher improvement of RPRs that belong to the b#sam in other RPRs. It is important to

notice also that all RPR requirements are met #feefirst round of control.
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Figure 8.6. Effect of switched shunts on RPRs

Bus voltage magnitudes across the system are sholigure 8.7. As can be seen from the
figure, low voltage magnitude at bus 26 is the lmgatonstrain in the first round of control. It is
important remember that the parameters always set to a large value in the first rowid
control to keep VSM constraint from binding. Thesdone because we cannot estimate the initial
value of & until one round of control is applietHowever, after the first round of control, an
estimation of parameter can be obtained by dividing the change in VSM ioleid after C1 by
the sum of the changes in all critical RPRs (8,ahdl 13 in this case), as shown in equation
(8.12).

The second round of control is calculated sinceatineunt of VSM is still under the limits
specified in the approach (30%0+5%). In total, three rounds of control are neagegin order to
meet al.l the specified requirements. Notice the tontrol includes reduction of shunt

compensation in certain buses in order to avoithtiam of voltage limits.
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Figure 8.7. Voltage profile enhancement with swettishunts

After C3, the amount of margin is enhanced from087%o 48.14MW, characterizing an

improvement of 29.8% as shown in Figure 8.8.
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Figure 8.8. VSM enhancement with shunt switch
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Therefore, differently than active power generatiswitched shunts can be used alone in

order to improve RPRs and VSM while maintainingadequate voltage profile.

8.5.1.3 Load shedding as control action (P, and Q)
The effectiveness of load shedding in enhancing RIPR VSM is investigated next.

Although load shedding may be highly undesirablenay sometimes be the last resort to
improve RPRs and avoid a voltage collapse. Loddfrean be seen as a demand side response
and could be used in order to avoid further systisgenerating condition. In the current
deregulated energy market, demand side responsmsstare already in place in order to reduce
peak load and can also be considered for emergemtyol.

In this study, load shedding is considered on bu$gsl7, 21, 24 and 26, with load being

shed at constant power factor. The RPRs improvesrdunt to load shedding are presented in

Figure 8.9.
o™
~
100 =
© | |nitial
90 nitia
After C1

m After C2
m After C3

RPR (MVAr)

Qg2 Qg5 Qg8 Qgll Qg13
Generating units

Figure 8.9. Effect of load shedding on RPRs
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Three rounds of control are necessary to achidvihalrequirements and are displayed in

Table 8.3. Notice that only one round of controhéxessary to increase critical RPRs to the pre

specified levels shown in Figure 8.9. The subseguentrol actions will only be used to

enhance system VSM while maintaining an adequdtageprofile.

Table 8.3. IEEE 30 — Control Amounts Using Loaddsag control action

APg  AQue APz AQuz AP AQun APy AQuas APrs AQize

After C1(p.u) 0.035 0.018 0.072 0.047 0.081 0.052 0.064 0.058 540.0 0.027
After C2(pu) 0.000 0.000 0.018 0.011 0.032 0.021 0.032 0.028 360.0 0.018
After C3(p.u) 0.000 0.000 0.000 0.000 0.009 0.006 0.009 0.008 09.0 0.005
Total (p.u) 0.035 0.018 0.090 0.058 0.122 0.078 0.105 0.094 99.0 0.050

Figure 8.10 shows system wide bus voltage magrstudéer control C1 is applied, the

system not only brings all RPRs to the requiredies| but is also removes existing voltage

violations as shown in Figure 8.10.
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Figure 8.10. Voltage profile enhancement with lshddding
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However, two rounds of control are not sufficieathring the amount of VSM within the
range of 30% +5% and thus a third round of control is necessAfter C3 is applied, the
amount of VSM is increased from 37.09MW to 48.07MWpresenting an improvement of
approximately 29.6% as shown in Figure 8.11. Afteree rounds of control the method

converges with all requirements met and no morérabactions are necessary.

1.2

—_——
o —— e,

———
T . o
\--\‘“ —_—
0.8 S~
-
~—

N

0.6 s

\

29.6% enhancement

Voltage magnitude at bus 30 (p.u.)

0.4
Initial After C1
0.2
0 --- AfterC2 — — AfterC3
0 10 20 30 40 50
VSM (MW)

Figure 8.11. VSM enhancement with load shedding

Based on the aforementioned results, load shedcimgalso be used alone in order to
improve RPRs and VSM. In the next section, thequerénce of all control variables will be

assessed together in a larger test case.

8.5.2 IEEE 118 bus system

Once the efficacy of each control variable has ba&®erestigated, the approach is

implemented considering all controls at once. TE#H118 bus test system is used to
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demonstrate the methodology. A total of 58 macharesavailable in the system and the current

load level is 3867.00MW, with a VSM of 253.07MW. #iis operating condition, some RPRs

are at a very low level and a few voltage violasi@me found to occur on the system. In order to

enhance RPRs, VSM and voltage profile, the metlogpois applied to the system.

System load is increased in order to obtain the R&8n. Seven generato@xri Qrs Qrs,

Qr10, Qris, Qris and Qrig are found to exhaust their limits and hence fdhm RPR basin.

Initially, the costs associated with each contrel eonsidered the same. The amount of control

found after implementing the methodology is showiTable 8.4. It can be seen that there is a

significant generation reduction in unit 10 anddaedding on buses 7, 17, 20 and 33. After

three iterations, all RPRs, voltage limits and V&Muirements have been met.

Table 8.4. IEEE 118 — Amount of control considersiagne weight foAPg, ABg, AP andAQ

APgro  ABgy  ABgy  ABgus

4By ABgi;  ABs  ABg AP 7 4Qu7 APz AQuy AP AQo APz AQus

After Cl(pu)  -0.162 0229 0.119  0.155

After C2(pu) -0.183 0.166 0.180  0.161

After C3(pu)  -0.162  0.151 0.164  0.146

0.447 0.976 0.502 0.3735 -0.071 -0.007 -0.110 -0.030 -0.100 -0.1084 -060.013

0.146 0.089 0.070 0.0829 -0.088 -0.009 -0.000 -0.000 -0.000 -0.0064 -00.025

0.132 0.081 0.064 0.0753 -0.028 -0.003 -0.000 -0.000 -0.000 -00067 - -0.022

Total (pu)  -0.324 0.381 0283 0.302

0.580 1.057 0.566 0.4488 -0.099 -0.010 -0.110 -0.030 -0.100 -0.100 -0.091 -0.035

The amount of control

after three rounds is dispthyon Table 8.5, whereas RPR

enhancements are shown in Figure 8.12 and systéagegqrofile is shown in Figure 8.13. All

RPR requirements and system wide voltages requienage brought back within the specified

requirements after one round of control.

The next two rounds of control will be used to iagaminimal amount of VSM. Figure 8.14

shows how the VSM varies with the next two rounfiscantrol. Notice that the amount of

margin is increased from 253.07 to 332.43MW (31.4%¥presenting a small overestimation.
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Figure 8.12. Effect of diverse set of control acti@n RPRs — same control costs

Since this is more than 0.5% beyond the expectegjimanhancement, another round of
control needs to be applied in order to reduce sofn¢he excess in margin correction.
According to the flowchart above, in case of a $raaérestimation of margin, a correction of
the parametetr should be enough to properly bring VSM to the gptlimits.

The third round of control reduces the amount afdlshed in the second round and brings
the VSM within the 30% ©.5%. A total margin is of 330.2MW is found afté8, representing

an enhancement of 30.4%. At this point, all requeets are met and the approach is said to

converge.
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However, it is often desirable to avoid generatieduction and load shedding as this can
result in economic losses and service interruptiolisother problem that may occur in
deregulated energy markets is the absence ofiqaditin to tell energy producers that they need
to reduce their generation output.

In order to reduce generation re-dispatch and $badiding, their weights in the optimization
problem (8.13) are set to 50, whereas the weigkhaht compensation remains at 1. Seventeen
possible control candidate variables are considerd®.13) and only twelve control variables
are selected by the method due to their higheritsgties. The amount of control found at each

round of control is shown at Table 8.5.

Table 8.5. IEEE 118 — Amount of control considenmgight 1 forABs/weight 50 forAP_ and

AQL

APgyy  ABgy  ABgy  ABgus  ABgne  ABgiz  ABgy  ABggo AP 4Qu7 APiy; AQuy AP AQo  APig 4Qus;

After C1(p.u) -0.012 0.223  0.387 0.152 0.457 1.016 0.722 0.389 -0.001 -0.0002  -0.009 -0.002  -0.019 -0.0000 -G0.0003
After C2(pu) -0.004 0.208 0.228 0.202 0.183 0.112 -0.053 0.103 -0.002 -0.0002 -0.001 -0.000 -0.001 -0.001 -0.001 -0.0006

After C3(p.u) -0.003 0.168 0.184 0.163 0.148 0.090 -0.053 0.083 -0.001 -0.0002 -0.001 -0.000 -0.001 -0@0D1 - -0.0005

Total (p.u) -0.016 0.391 0.571 0.316 0.605 1.107 0.669 0.472 -0.003 -0.0004 -0.011 -0.002 -0.021 -0.0202 -G0.0008

The enhancements in RPRs, voltage profile and Va8Mbe seen Figure 8.15, Figure 8.16
and Figure 8.17, respectively. Similarly to theyiwes cases, all RPRs and voltage violations are
removed after the first round of control.

However, due to error involved with the linear appmations used to calculate the
sensitivities, voltage at bus 22 goes beyond theman limit after C1 is applied as shown in
Figure 8.16. Therefore, the amount of control agaplin the second round of control must

remove the voltage violation and still be ablenoréase the amount of VSM.
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Figure 8.15. Effect of diverse set of control acti@n RPRs — different control costs
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Figure 8.17. VSM enhancement at with a divers@kebntrol actions — different control costs

After applying C2 from Table 8.5, the voltage as®P is brought back to the specified
voltage limits by reducing the amount of shunt cengation at bus 22. Notice that the amount
of VSM has increased from 253.07MW initially to 384MW, representing an enhancement of
32.2%.

Since the amount of VSM has been increased slidgigilyond the desired margin of 30% +
0.5%, the third round of control has the objectiseadjust the control variables so that the
amount of VSM falls within the predefined range.tekfC3, the total amount of margin is

329.56MW, representing an enhancement of 30.2%hargdfinally reaching convergence.

8.6 Conclusions
In this work, a fast control method for online apations has been proposed. The
methodology utilizes RPR sensitivities to find tnest effective control variables at enhancing

RPR, VSM and voltage profile. A quadratic conveximpzation problem is then formulated to
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identify the minimal amount of control necessaratiain the specified requirements. Results on
the IEEE30 and IEEE118 bus test systems have shimatrthe methodology can successfully
find the minimal amount of control in a few ite@ts. It has also been shown that by weighting
the control variables differently, system operatoen choose which controls variables to
emphasize. Using less generation re-dispatch sl 3bedding may be preferable since these

two actions may cause loss of revenues and sentgeuption, respectively.
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CHAPTER 9. FINAL CONCLUSIONS

9.1 Discussions on the importance of this work

This research has investigated the possibility sihgt RPRs as an indicator to voltage
stability margin. Results have shown that even ghathe relationship between RPR and VSM
has been thought to be linear, some generators &daege quadratic component if a wide
operating range is considered. The inclusion ose¢hquadratic RPR terms in the MLRM not
only contributed to an improvement in the accurdayt also helped to enhance statistical
properties of the MLRM.

The improvement in performance obtained when quigdigrms are used must also reduce
the number of MLRMs necessary to cover all différerenarios. Even when a larger system is
considered, only four MLRMs are needed to accoontafl 190 contingencies and 10 LIDs,.
This shows that the methodology can be implemeimddrger networks without an excessive
number of MLRMs. Another important observation &tt the number of MLRMs does not
increase with the size of the system, thereby @maitthe methodology to be used in large
networks.

The incorporation of confidence intervals in thémeations of VSM helps system operators
model the amount of uncertainty involved in onlmgerations. Once the MLRM produces an
estimation of VSM, the addition of a confidenceemtl will help system operators to determine
the urgency and amount of remedial actions necgssar

Another advantage of the presented methodologhas it provides an absolute degree of

stability regarding voltage stability. The estinoatiof VSM with confidence intervals in MW is
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easier for system operators to comprehend. Thilsl dmuof great usefulness in SCADA systems,
where a massive amount of data is currently digglaand concise indexes are needed.

A novel approach to improve RPRs and VSM in reaktis also proposed in this thesis. The
use of RPR sensitivities helps to identify the tawaof the most effective control variables that
affect each individual reserve. Only a selected (feRPRs is targeted due to their direct
influence on system voltage collapse. Those cliteserves combined form the so-called RPR
basin. An optimal control approach is formulatedaasonvex quadratic problem in order to
identify the minimum amount of control necessanytfese critical RPRs. The advantage of this
type of formulation is that there are a algorithmisch can find a converged solution in a finite
number of iterations. Moreover, every local optirsalution can be shown to be a global optimal
solution for this type of problem, thereby guarairtg that the minimal amount of control will
be found at each stage.

The insertion of voltage limits and minimal VSM a&traints help the method achieve a
minimal amount of control while maintaining an adatg voltage profile. The reduced
dimension of the optimization problem makes therepgh suitable for real time emergency
control. The formulation of the control search asoavex quadratic optimization problem has
several desirable characteristics for the operati@nvironment, including guaranteed
convergence and convergence to the global optinoaticn.

Overall, the methodology represents a potentiataggh to overcome challenges brought by

the introduction of smart grid technologies and@ased uncertainty.

9.2 Future research
Future research should focus on the practical impigation aspects of the methodology and

its capability to generalize. A higher level of @mation to preprocess data can also reduce the
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total time involved in the MRLM and MLRM-IDtool delopment. Although good results been
achieved, further enhancement of both the MLRMs #red MLRM-IDtool can contribute to
more precise and accurate VSM estimations.

One of the points of improvement can focus on hmwrtable the models to perform well for
unforeseen operating conditions and scenarios. ¥paresion of the training set to include a
wider range of operating conditions can be a stegatds this goal. An investigation of how
sensitive these models are for unforeseen opereingitions can also be done.

The investigation of MLRM performance on unforeseentingencies can also be object of
future research. In this work, a large but limissd of contingencies has been used to generate
the MLRMs. Although a large number of contingencres/e been considered, it would be
interesting to analyze the performance of theseaisddr unforeseen contingencies.

Since the accuracy of the MLRMs will depend on giieximity of the test cases to the
current SCADA/EMS condition, a mechanism to compaee cases used to train the MLRMs
and the current operating conditions would be hgli@uch mechanism could determine whether
the current SCADA conditions have been used dutiegMLRM training phase. We did not
have the opportunity to make such comparison ans litelieved that they can be helpful in
creating more accurate models.

Another direction of further research can focusttom investigation of the effects of a high
penetration of wind turbines on the amount of VSMe inclusion of wind variability with time
can provide a more realistic effect on how the amhaaf margin varies for different wind
scenarios. Variation of the capability curve of evigenerators from constant power factor to the

actual capability curve can also be included insingulations for a more realistic assessment.
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A further investigation of other machine learnimghniques and their performance on the
studied scenarios can also be object of futurearebe

Regarding the optimal control method, other vadabtan be investigated as potential
sources of control to increase the amount of RRidsVi6M. The methodology has shown good
results on a mid-sized system and could also bed&s larger networks.

A method to select the control variables that wél used in the optimization problem can

also be established. As of now, the control vaesblvith highest sensitivities on critical

generators are used.
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